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Predicting Human Eye Fixations via an
LSTM-based Saliency Attentive Model

Marcella Cornia, Lorenzo Baraldi, Giuseppe Serra, and Rita Cucchiara

Abstract—Data-driven saliency has recently gained a lot of
attention thanks to the use of Convolutional Neural Networks for
predicting gaze fixations. In this paper we go beyond standard
approaches to saliency prediction, in which gaze maps are
computed with a feed-forward network, and present a novel
model which can predict accurate saliency maps by incorporating
neural attentive mechanisms. The core of our solution is a
Convolutional LSTM that focuses on the most salient regions
of the input image to iteratively refine the predicted saliency
map. Additionally, to tackle the center bias typical of human eye
fixations, our model can learn a set of prior maps generated with
Gaussian functions. We show, through an extensive evaluation,
that the proposed architecture outperforms the current state of
the art on public saliency prediction datasets. We further study
the contribution of each key component to demonstrate their
robustness on different scenarios.

Index Terms—Saliency, Human Eye Fixations, Convolutional
Neural Networks, Deep Learning

I. INTRODUCTION

V ISUAL cognition science has shown that humans, when
observing a scene without a specific task to perform,

do not focus on each region of the image with the same
intensity. Instead, attentive mechanisms guide their gazes on
salient and relevant parts [1]. An intensive research effort
has tried to emulate such selective visual mechanisms, as
computational saliency can be applied to a wide range of
applications like image retargeting [2], object recognition [3],
video compression [4], tracking [5] and other data-dependent
tasks such as image captioning [6].

Traditional saliency prediction methods have followed bi-
ological evidence by defining features that capture low-level
cues such as color, contrast and texture or semantic concepts
such as faces, people and text [7], [8], [9], [10]. However,
these techniques have failed to capture the wide variety of
causes that contribute to defining visual saliency maps.

With the advent of deep neural networks, saliency prediction
has achieved strong improvements both thanks to specific
architectures and to large annotated datasets [11], [12], [13],
[14]. Although these approaches went beyond the limitations
of hand-crafted models, no one has yet investigated the in-
corporation of machine attention models [15], [16], [17] in
saliency prediction.

Machine attention [15] is a computational paradigm which
sequentially attends to different parts of an input. This is
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Fig. 1. Visual saliency prediction aims at predicting where humans gazes
will focus on a given image. Groundtruth data is collected by means of eye-
tracking glasses or mouse clicks to get eye fixation points, which are then
smoothed together to obtain the groundtruth saliency map. Our model learns to
predict the distribution of human fixation points by refining feature extracted
from a CNN with a novel LSTM-based attentive model.

usually achieved by exploiting a recurrent neural network, and
by defining a compatibility measure between its internal state
and regions of the input. This paradigm has been successfully
applied to image captioning [15] and machine translation [18]
to selectively focus on different parts of a sentence, and to
action recognition [19] to focus on the relevant parts of a
spatio-temporal volume. We argue that machine attention can
also be effective for saliency prediction, as a powerful way to
process saliency-specific features and to obtain an enhanced
prediction.

In this paper we propose a novel saliency prediction ar-
chitecture that incorporates an Attentive Convolutional Long
Short-Term Memory network (Attentive ConvLSTM) that iter-
atively focuses on relevant spatial locations to refine saliency
features. The architecture is particularly original since the
LSTM model is used to achieve a refinement over an image,
instead of handling a temporal sequence.

Moreover, the rescaling caused by max-pooling and strides
in convolutional layers deteriorates the performance of
saliency prediction, we present an extension of two popular
CNNs (namely, VGG-16 [20] and ResNet-50 [21]) which can
reduce the downscaling effect and maintain spatial resolution.
This expedient allows us to preserve detailed visual informa-
tion and obtain improved feature extraction capabilities.

Finally, in order to handle the tendency of humans to fix
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TABLE I
COMPARISON BETWEEN THE MAIN PROPERTIES OF OUR MODEL AND THOSE OF OTHER EXISTING SALIENCY METHODS. (*) INDICATES CITATIONS TO

NON-PEER REVIEWED TEXTS.

CNN Attentive LSTM Center Bias Loss Function

SALICON [12] AlexNet - VGG-16 -
GoogleNet 7 7 KL-Div

DeepFix [22] VGG-16 7 handcrafted priors Euclidean loss

SalNet [23] VGG-16 7 7 Euclidean loss

PDP [13] VGGNet 7 7 probability distances

ML-Net [14] VGG-16 7
single multiplicative

map normalized MSE

DSCLRCN [24] (*) VGG-16 - ResNet-50 7 7 NSS

Saliency Attentive Model (SAM) VGG-16 - ResNet-50 3
multiple learned

priors
combination of multiple

saliency metrics

the center region of an image, we also introduce an explicit
prior component. Unlike previous approaches that include
handcrafted priors [9], [25], [11], [22], [26], our module keeps
the architecture trainable end-to-end and can learn priors in an
automatic way.

Figure 1 shows examples of saliency maps predicted by the
proposed solution, which we call Saliency Attentive Model
(SAM), compared with groundtruth saliency maps obtained
from human eye fixations. We quantitatively validate our ap-
proach on three publicly available benchmark datasets: SALI-
CON, MIT300 and CAT2000. Experimental results will show
that the proposed solution significantly improves predictions.
To summarize, the contributions of this paper are threefold:
• We propose a novel Attentive ConvLSTM that sequen-

tially focuses on different spatial locations of a stack
of features to enhance predictions. To the best of our
knowledge, we are among the first to incorporate attentive
models in a saliency prediction architecture.

• Our network is able to learn the bias present in eye
fixations, without the need to integrate this information
manually.

• The proposed solution overcomes by a big margin the
current state of the art on the largest dataset available
for saliency prediction, SALICON. Moreover, on MIT300
and CAT2000 our method achieves state of the art results
showing competitive generalization properties.

We make the source code of our method and pre-trained
models publicly available1.

II. RELATED WORK

Pioneering works on saliency prediction were based on the
Feature Integration Theory proposed by Treisman et al. [27]
in the eighties. Itti et al. [28] defined the first computational
model to predict saliency on images: this work, inspired
by Koch and Ullman [29], computed a set of individual
topographical maps representing low-level cues such as color,
intensity and orientation and combined them into a global

1https://github.com/marcellacornia/sam

saliency map. After this seminal work, a large variety of
methods explored the same idea of combining complementary
low-level features [30], [7], [31] and often included additional
center-surround cues [32], [10]. Other methods enriched pre-
dictions exploiting semantic classifiers for detecting higher
level concepts such as faces, persons, cars and horizons [33],
[9], [34], [8], [35]. Related research efforts have also been
done in the compressed domain, as in [36], [37].

A. Saliency and Deep Learning

Only recently, thanks to the large spread of deep learning
techniques, the saliency prediction task has achieved a consid-
erable improvement. One of the first proposals has been the
Ensemble of Deep Networks (eDN) model by Vig et al. [25].
This model consists of three convolutional layers followed
by a linear classifier that blends feature maps coming from
the previous layers. After this work, Kümmerer et al. [11],
[26] proposed two deep saliency prediction networks: the first,
called DeepGaze I, was based on the AlexNet model [38],
while the second, DeepGaze II, was built upon the VGG-19
network [20]. Liu et al. [39] presented a multi-resolution CNN
(Mr-CNN) fine-tuned over image patches centered on fixation
and non-fixation locations.

It is well known that deep learning approaches strongly de-
pend on the availability of sufficiently large datasets. The pub-
lication of a large-scale eye-fixation dataset, SALICON [40],
indeed contributed to a big progress of deep saliency prediction
models. Huang et al. [12] introduced an architecture consisting
of a deep neural network applied at two different image scales.
They compared different standard CNN architectures such as
AlexNet [38], VGG-16 [20] and GoogleNet [41], in particular
showing the effectiveness of the VGG network.

After this work, several deep saliency models based on the
VGG network have been published [22], [23], [13], [42], [14],
[43], [44], [45]. Accordingly, we proposed a new architecture,
called ML-Net [14], which improved previous attempts by
using features coming from multiple layers of a CNN and by
adding a learned prior map. In particular, we learned a matrix
of weights which was applied to the output saliency map with

https://github.com/marcellacornia/sam
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Fig. 2. Overview of our Saliency Attentive Model (SAM). After computing a set of feature maps on the input image through a new architecture called Dilated
Convolutional Network, an Attentive Convolutional LSTM sequentially enhances saliency features thanks to an attentive recurrent mechanism. Predictions are
then combined with multiple learned priors to model the tendency of humans to fix the center region of the image. During the training phase, we encourage
the network to minimize a combination of different loss functions, thus taking into account different quality aspects that predictions should meet.

a pixel-wise multiplication. The usage of centered priors has
also been investigated in [22], where multiple predefined priors
were fed to a convolutional layer.

In this work, instead, we model the center bias present
in human gazes using multiple learned prior maps. This is
different from the approaches of [14] and [22], as we let
the network learn a set of Gaussian parameters, keeping it
trainable end-to-end without predefined information.

Recently, Pan et al. [44] introduced SalGAN, a deep network
for saliency prediction trained with adversarial examples. As
all other Generative Adversarial Networks, it is composed by
two modules, a generator and a discriminator, which combine
efforts to produce saliency maps.

In this work, we also employ the ResNet [21] model to
extract feature maps from the input image. The only other
saliency model that exploits this network is proposed by Liu et
al. [24] and called DSCLRCN. This model simultaneously
incorporates global and scene contexts to infer image saliency
thanks to a deep spatial contextual LSTM which scans the
image both horizontally and vertically.

To better highlight the differences of our model with respect
to other existing saliency methods, we report in Table I a
summary of the main properties of our solution and those
of the most competitive methods. Note that none of the other
methods incorporate an attentive mechanism or a set of prior
maps directly learned by the network. In addition, differently
from other previous models, we propose a loss function which
is a balanced combination of different saliency metrics and that
provides state of the art performances.

A related line of research is that of explaining activations
of a neural model by means of techniques based on backprop-
agation [46]. It is worthwhile to notice that this research line
is very different from that of saliency prediction, as it does
not aim to replicate human fixations.

B. Salient Object Detection

Salient object detection is slightly related to the topic of this
work, even though it is a significantly different task. Salient
object detection consists, indeed, in identifying a binary map
indicating the presence of salient objects [47], [48], [49], [50].
On the contrary, in saliency prediction the objective is to
predict a density map of eye fixations.

A saliency detection approach which is in some aspects
related to our work is that of Kuen et al. [51], in which a
recurrent (non convolutional) network provides salient object
detection. At each timestep, their recurrent network outputs
the parameters of a spatial transformation which is used to
focus on a particular location of the image, and builds the
binary prediction for that location. Our recurrent network is,
instead, convolutional, and is used to process saliency features
by iteratively refining the prediction.

III. MODEL ARCHITECTURE

In this section we present the architecture of our complete
model, called SAM (Saliency Attentive Model).

The main novelty of our proposal is an Attentive Convo-
lutional model, which recurrently processes saliency features
at different locations, by selectively attending to different
regions of a tensor. This architecture, that for the first time
uses an LSTM without the concept of time, is described in
Section III-A.

Predictions are then combined with multiple learned priors
which are used to model the human-gaze center bias (Sec-
tion III-B). To extract feature maps from input images, we
employ a Convolutional Neural Network model. Instead of
using a pre-defined CNN, we propose a Dilated Convolutional
Network to limit the rescaling effects which can worse saliency
prediction performance (Section III-C). A new combination of
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Fig. 3. Progressive refinement of predictions performed by the Attentive
ConvLSTM. The first and the second row show a progressive change of focus
in the saliency map, so that regions which were wrongly predicted as salient
are progressively corrected, and truly salient regions are correctly identified.
The third and the fourth row, instead, respectively show an increase and a
reduction of saliency in regions of the image that have been (or have not
been) considered as salient at the first timestep. In all cases, the result is a
progressive approach of the saliency map to the groundtruth.

different loss functions is finally used to train the whole net-
work by simultaneously taking into account different quality
aspects (Section III-D). The overall architecture of our model
is shown in Figure 2.

A. Attentive Convolutional LSTM

Long Short-Term Memory networks [52] achieved good
performances on several tasks in which time dependencies are
a key component [53], [54], [55], [56], but they can not be
directly employed for saliency prediction, as they work on
sequences of time varying vectors. We extend the traditional
LSTM to work on spatial features: formally this is achieved by
substituting dot products with convolutional operations in the
LSTM equations. Moreover, we exploit the sequential nature
of LSTM to process features in an iterative way, instead of
using the model to deal with temporal dependencies in the
input.

To explain our proposal of the attentive model, let’s consider
the LSTM scheme on the left part of Fig. 2. Here the LSTM
takes as input a stack of features extracted from the input
image (X in Fig. 2) and produces a refined stack of feature
maps (X ′ in Fig. 2) entering in the learned prior module.
The LSTM works by sequentially updating an internal state,
according to the values of three sigmoid gates. Specifically,
the update is driven by the following equations:

It = σ(Wi ∗ X̃t + Ui ∗Ht−1 + bi) (1)

Ft = σ(Wf ∗ X̃t + Uf ∗Ht−1 + bf ) (2)

Ot = σ(Wo ∗ X̃t + Uo ∗Ht−1 + bo) (3)

Gt = tanh(Wc ∗ X̃t + Uc ∗Ht−1 + bc) (4)
Ct = Ft � Ct−1 + It �Gt (5)
Ht = Ot � tanh(Ct). (6)

Here, the gates It, Ft, Ot, the candidate memory Gt, memory
cell Ct, Ct−1, and hidden state Ht, Ht−1 are 3-d tensors, each

of them having 512 channels. ∗ represents the convolutional
operator, all W and U are 2-d convolutional kernels, and all
b are learned biases.

The input of the LSTM layer X̃t is computed, at each
timestep (i.e. at each iteration), through an attentive mecha-
nism. In particular, an attention map is generated by convolv-
ing the previous hidden state Ht−1 and the input X , feeding
the result to a tanh activation function and finally convolving
with a one channel convolutional kernel:

Zt = Va ∗ tanh(Wa ∗X + Ua ∗Ht−1 + ba). (7)

The output of this operations is a 2-d map from which we
can compute a normalized spatial attention map through the
softmax operator:

Aij
t = p(attij |X,Ht−1) =

exp(Zij
t )∑

i

∑
j exp(Z

ij
t )

(8)

where Aij
t is the element of the attention map in position (i, j).

The attention map is applied to the input X with an element-
wise product between each channel of the feature maps and
the attention map:

X̃t = At �X. (9)

Fig. 3 shows saliency predictions on four sample images,
using the output of the ConvLSTM module at different
timesteps as input of the rest of the model. As can be
noticed, predictions are progressively refined by modifying the
initial map given by the CNN. This refinement results in an
significant enhancement of the predictions.

B. Learned Priors

Psychological studies have shown that when observers look
at images, their gazes are biased toward the center [57],
[58]. This phenomenon is mainly due to the tendency of
photographers to position objects of interest at the center of
the image. Also, when people repeatedly watch images with
salient information placed in the center, they naturally expect
to find the most informative content of the image around its
center [58]. Another important reason that encourages this
behavior is the interestingness of the scene [59]. Indeed, when
there are no highly salient regions, humans are inclined to look
at the center of the image.

Based on this evidence, the inclusion of center priors is
a key component of several recent works of saliency predic-
tion [9], [25], [11], [22], [26], [14]. Differently from existing
works, which included pre-defined priors, we let the network
learn its own priors. To reduce the number of parameters and
facilitate the learning, we constraint each prior to be a 2d
Gaussian function, whose mean and covariance matrix are
instead freely learnable. This lets the network learn its own
priors purely from data, without relying on assumptions from
biological studies.

We model the center bias by means of a set of Gaussian
functions with diagonal covariance matrix. Means and vari-
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Fig. 4. Overall architectures of Dilated Convolutional Networks based on the VGG-16 and ResNet-50 models. Convolutional and pooling blocks are respectively
expressed in terms of channels_kernel_stride_holes and kernel_stride. On top of the ResNet model, we report the number of repetitions for
each block. Red dashed edges indicate modified layers with respect to the original networks.

ances are learned for each prior map according to the following
equation:

f(x, y) =
1

2πσxσy
exp

(
−
(
(x− µx)

2

2σ2
x

+
(y − µy)

2

2σ2
y

))
.

(10)
Our network learns the parameters of N Gaussian functions

(in our experiments N = 16) and generates the relative
prior maps. Since the X ′ tensor has 512 channels, after the
concatenation with learned prior maps, we obtain a tensor
with 528 channels. The resulting tensor is fed through a
convolutional layer with 512 filters. This operation adds more
non-linearity to the model and proves to be effective with
respect to other previous works, as reported in Section V-C.
The entire prior learning module is replicated two times.

C. Dilated Convolutional Network

One of the main drawbacks of using CNNs to extract
features for saliency prediction is that they considerably
rescale the input image during the feature extraction phase,
thus worsening the prediction accuracy. In the following, we
devise a strategy which increases the output resolution of a
CNN while preserving the scale at which convolutional filters
operate and the number of parameters. This makes it possible
to use pre-trained weights, and thus to reduce the need for
fine-tuning convolutional filters after the network structure has
been modified.

The intuition of the approach is that given a CNN of choice
and one of its layers having stride s > 1, we can increase
the output resolution by reducing the stride of the layer, and
adding dilation [60] to all the layers which follow the chosen
layer. In this way, all convolutional filters still operate on the
same scale they have been trained for. We apply this technique
on two recent feature extraction networks: the VGG-16 [20]
and the ResNet-50 [21].

The VGG-16 network is composed by 13 convolutional
layers and 3 fully connected layers. The convolutional layers

are divided in five convolutional blocks where, each of them
is followed by a max-pooling layer with a stride of 2.

The ResNet-50, instead of having a series of stacked layers
that process the input image as in common CNNs, performs
a series of residual mappings between blocks composed by a
few stacked layers. This is obtained using shortcut connections
that realize an identity mapping, i.e. the input of the block
is added to its output. Residual connections help to avoid
the accuracy degradation problem [61] that occurs with the
increase of the network depth, and are beneficial also in
the saliency prediction case, since they improve the feature
extraction capabilities of the network.

In particular, the ResNet-50 network consists of five con-
volutional blocks and a fully connected layer. The first block
is composed by one convolutional layer followed by a max-
pooling layer, both of them having a stride of 2, while the
remaining four blocks are fully convolutional. All of these
blocks, except the second one (conv2), reduce the dimension
of feature maps with strides of 2.

Since the purpose of our network is to extract feature
maps, we only consider convolutional layers and ignore fully
connected layers which are present at the end of both networks.
Moreover, it can be noticed that the downscaling factor of
both of these architectures is particularly critical. For example,
with an input image having a size of 240 × 320, the output
dimension is 8× 10, which is relatively small for the saliency
prediction task. For this reason, we modify network structures
to limit the rescaling phenomenon.

For the VGG-16 model, we also remove the last max-
pooling layer and apply the aforementioned technique to the
last but one pooling layer (see Figure 4a). On the contrary, for
the ResNet-50 model we remove the stride and we introduce
dilated convolutions in the last two blocks (see Figure 4b).
In this case, since the technique is applied two times, we
introduce holes of size 1 in the kernels of the block conv4
and holes of size 22 − 1 = 3 in the kernels of the block
conv5. The output of the residual network is a tensor with
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2048 channels. To limit the number of feature maps, we feed
this tensor into another convolutional layer with 512 filters.
Thanks to these expedients, our saliency maps are rescaled
by a factor of 8 instead of 32 as in the original VGG-16 and
ResNet-50 models.

We include dilated convolutions also in prior layers, thus
obtaining two convolutional layers with large receptive fields
that allow us to capture the saliency of an object with respect
to its neighborhood. We set the kernel size of these layers to
5 and the holes size to 3 achieving therefore a receptive field
of 17 × 17. Strides of these layers are set to 1 and both of
them are followed by a ReLU activation function.

The last layer of our model is a convolutional operation
with one filter and a kernel size of 1 that extracts the final
saliency map. Since the predicted map has lower dimensions
than the original image, it is brought to its original size via
bilinear upsampling.

D. Loss function

In order to capture several quality factors, saliency predic-
tions are usually evaluated through different metrics. Inspired
by this evaluation protocol, we introduce a new loss function
given by a linear combination of three different saliency
evaluation metrics. We define the overall loss function as
follows:

L(ỹ,yden,yfix) =

αL1(ỹ,y
fix) + βL2(ỹ,y

den) + γL3(ỹ,y
den)

(11)

where ỹ, yden and yfix are respectively the predicted saliency
map, the groundtruth density distribution and the groundtruth
binary fixation map, while α, β and γ are three scalars
which balance the three loss functions. L1, L2 and L3 are
respectively the Normalized Scanpath Saliency (NSS), the
Linear Correlation Coefficient (CC) and the Kullback-Leibler
Divergence (KL-Div) which are commonly used to evaluate
saliency prediction models.

The NSS metric was defined specifically for the evaluation
of saliency models [62]. The idea is to quantify the saliency
map values at the eye fixation locations and to normalize it
with the saliency map variance:

L1

(
ỹ,yfix

)
=

1

N

∑
i

ỹi − µ(ỹ)
σ(ỹ)

· yfix
i (12)

where i indexes the ith pixel, N =
∑

i y
fix
i is the total number

of fixated pixels and ỹ is normalized to have a zero mean and
unit standard deviation.

The CC, instead, is the Pearson’s correlation coefficient and
treats the saliency and groundtruth density maps, ỹ and yden ,
as random variables measuring the linear relationship between
them. It is computed as:

L2

(
ỹ,yden

)
=

σ
(
ỹ,yden

)
σ (ỹ) · σ (yden)

(13)

where σ
(
ỹ,yden

)
is the covariance of ỹ and yden.

The KL-Div evaluates the loss of information when the
distribution ỹ is used to approximate the distribution yden,

therefore taking a probabilistic interpretation of saliency and
groundtruth density maps. Formally:

L3

(
ỹ,yden

)
=
∑
i

yden
i log

(
yden
i

ỹi + ε
+ ε

)
(14)

where i indexes the ith pixel and ε is a regularization constant.
The KL-Div is a dissimilarity metric and a lower value
indicates a better approximation of the groundtruth by the
predicted saliency map.

In Section V-A, we quantitatively justify the choice of
our loss combination comparing our results with those ob-
tained using single evaluation metrics as loss function. More-
over, we compare the proposed training strategy with several
other probability distances used by previous saliency methods
demonstrating that our solution is able to achieve a better
balance among all evaluation metrics.

IV. EXPERIMENTAL SETUP

In this section we describe datasets and metrics used to
evaluate the proposed model, and provide implementation
details.

A. Datasets

For training and testing our model, we use four of the most
popular saliency datasets which differ in terms of both image
content and experimental settings.
- SALICON [40]: This is the largest available dataset for
saliency prediction. It contains 10,000 training images, 5,000
validation images and 5,000 testing images, taken from the
Microsoft COCO dataset [63]. Eye fixations are simulated with
mouse movements: as shown in [40], there is a high degree
of similarity between mouse-contingent saliency annotations
and fixations recorded with eye-tracking systems. Groundtruth
maps of the test set are not publicly available and predictions
must be submitted to the SALICON challenge website2 for
evaluation.
- MIT1003 [9]: The MIT1003 dataset contains 1003 images
coming from Flickr and LabelMe. Saliency maps have been
created from eye-tracking data of 15 observers.
- MIT300 [64]: The MIT300 dataset is a collection of 300
natural images with saliency maps generated from eye-tracking
data of 39 users. Saliency maps of this entire dataset are
held out and we used the MIT Saliency benchmark [65] for
evaluating our predictions. To test our network on this dataset,
we fine-tune it on images of the MIT1003 randomly split in
training and validation sets.
- CAT2000 [59]: This dataset contains 4,000 images coming
from a large variety of categories such as Cartoons, Art,
Satellite, Low resolution images, Indoor, Outdoor, Line draw-
ings, ect. It is composed of 20 different categories with 200
images for each of them. Saliency maps of the testing set,
composed by 2,000 images, are not available and we submitted
our saliency maps to the MIT Saliency benchmark [65] for
evaluation.

2https://competitions.codalab.org/competitions/3791

https://competitions.codalab.org/competitions/3791?secret_key=f8de41aa-090f-4fd1-967e-56fc52ad8456
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Fig. 5. Comparison between the proposed loss function and its components used individually as loss functions. We report results for both SAM-VGG and
SAM-ResNet on SALICON [40] (plots a-d), MIT1003 [9] (plots e-h) and CAT2000 [59] (plots i-l) validation sets. Plots on the same row correspond to a
different evaluation metric (CC, sAUC, AUC and NSS). The four color bars represent the loss functions used. As it can be observed, our loss function achieves
the best balance between metrics.

B. Evaluation Metrics

A large variety of metrics to evaluate saliency prediction
models exist and the main difference between them concerns
the ground-truth representation. In fact, saliency evaluation
metrics can be categorized in location-based and distribution-
based metrics [66], [67], [68]. The first category considers
saliency maps at discrete fixation locations, while the second
treats both ground-truth fixation maps and predicted saliency
maps as continuous distributions.

The most widely used location-based metrics are the Area
under the ROC curve, in its different variants of Judd (AUC)
and shuffled (sAUC), and the Normalized Scanpath Saliency
(NSS). The AUC metrics do not penalize low-valued false
positives giving a high score for high-valued predictions placed
at fixated locations and ignoring the others. Besides, the sAUC
is designed to penalize models that take into account the center
bias present in eye fixations. The NSS, instead, is sensitive
in an equivalent manner to both false positives and false
negatives.

For the distribution-based category, the most used evaluation
metrics are the Linear Correlation Coefficient (CC), the Sim-
ilarity (SIM) and the Earth Mover Distance (EMD). The CC

treats both false positives and false negatives symmetrically,
differently from the SIM that instead measures the intersection
between two distributions and for this reason it is very sensi-
tive to missing values. The EMD is a dissimilarity metric that
penalizes false positives proportionally to the spatial distance
from the groundtruth.

C. Implementation Details
We evaluate our model on SALICON, MIT300 and

CAT2000 datasets. For the first dataset, we train the network
on its training set and we use the 5, 000 validation images
to validate the model. For the second and the third dataset,
we pre-train the network on SALICON and then fine-tune
on MIT1003 dataset and CAT2000 training set respectively,
as suggested by the MIT Saliency Benchmark organizers. In
particular, to test our model on the MIT300 dataset, we use
903 randomly selected images of the MIT1003 to fine-tune
the network and the remaining 100 as validation set. For the
CAT2000 dataset, instead, we randomly choose 1, 800 images
of training set for the fine-tuning and we use the remaining
200 (10 for each category) as validation set.

For the SALICON, MIT1003 and MIT300 datasets, we
resize input images to 240×320. Since images from MIT1003
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Fig. 6. Comparison between the proposed combination of saliency metrics and
more traditional loss functions such as Euclidean Loss, χ2 Divergence, Cosine
Distance and Total Variation Distance. Each plot corresponds to a different
evaluation metric (CC, sAUC, AUC and NSS). The five color bars represent
the performance of our model trained with the considered loss functions. We
report results of both SAM-VGG and SAM-ResNet models on SALICON
validation set [40].

and MIT300 have different sizes, we apply zero padding bring-
ing images to have an aspect ratio of 4:3 and then resize them
to have the selected input size. Instead, images from CAT2000
dataset have all the same input size of 1080× 1920. For this
reason, we resize all images of this dataset to 180× 320.

Predictions of all datasets are slightly blurred with a Gaus-
sian filter. After a validation process, we set the standard
deviation of the Gaussian kernel to 7.

Weights of the Dilated Convolutional Networks are ini-
tialized with those of the VGG-16 and ResNet-50 models
trained on ImageNet [69]. For the Attentive ConvLSTM,
following the initialization proposed in [70], we initialize the
recurrent weights matrices Ui, Uf , Uo and Uc as random
orthogonal matrices. All W matrices and Ua are initialized
by sampling each element from the Gaussian distribution of
mean 0 and variance 0.052. The matrix Va and all bias vectors
are initialized to zero. Weights of all other convolutional layers
of our model are initialized according to [71].

At training time, we randomly sample a minibatch contain-
ing K training saliency maps, and encourage the network to
minimize the proposed loss function through the RMSprop
optimizer [72]. We found that a batch size of 10 is sufficient to
learn the model seamlessly. Batch normalization is preserved
in the ResNet-50 part of the model, and we do not add batch
normalization layers elsewhere.

Loss parameters α, β and γ are respectively set to −1,
−2 and 10 balancing the contribution of each loss function.
Differently from the KL-Div that is a dissimilarity metric and
its value should be minimized, the CC and the NSS are to be
maximized to predict better saliency maps. To this end, we
set α and β as negative weights. The choice of these balance

(a) (b) (c) Groundtruth

Fig. 7. Examples of saliency maps predicted by the DCN (a), the DCN with
the Attentive ConvLSTM (b), and the DCN with the Attentive ConvLSTM
and learned priors (c) compared with the groundtruth (d). Images are from
SALICON validation set [40].

weights is driven by the goal of having good results on all
evaluation metrics and by taking into account the numerical
range that the single metrics have at convergence.

During the training phase, we set the initial learning rate to
10−5 and we decrease it by a factor of 10 every two epochs
for the model based on the ResNet, and every three epochs
for that based on the VGG network.

V. EXPERIMENTAL EVALUATION

In this section we perform analyses and experiments to
validate the contribution of each component of the network.
We also show quantitative and qualitative comparisons with
other state of the art models.

A. Comparison between different loss functions

In Fig. 5 we compare results obtained by using single loss
functions (KL-Div, CC, NSS) and our combination proposed
in Section III-D. Results are reported for both versions of our
model on SALICON, MIT1003 and CAT2000 validations sets.
We call SAM-VGG the model based on the VGG network and
SAM-ResNet that based on the ResNet network.

As it can be seen, our combined loss achieves on average
better results on all metrics. For example on the SALICON
dataset, when the model is trained using the KL-Div or the CC
metrics as loss function, the performances are good especially
on the CC, while the model fails on the NSS. When the
model is trained using the NSS metric, instead, it achieves
better results only on the NSS and fails on all other metrics.
A similar behaviour is also present on the MIT1003 and
CAT2000 datasets where the gain in performance obtained by
our loss function is particularly evident on the CC, AUC and
NSS metrics, even reaching in some cases the best results.

To further validate the effectiveness of the proposed loss
function, we compare it with traditional loss functions and
probability distances used by other previous saliency mod-
els [42], [23], [13]. Fig. 6 shows the comparison between our
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TABLE II
ABLATION ANALYSIS OF SAM-VGG AND SAM-RESNET MODELS ON SALICON [40], MIT1003 [9] AND CAT2000 [59] VALIDATION SETS.

Dataset Model
SAM-VGG SAM-ResNet

CC sAUC AUC NSS CC sAUC AUC NSS

SALICON

Plain CNN 0.743 0.765 0.870 2.333 0.771 0.762 0.876 2.404
Dilated Convolutional Network 0.801 0.786 0.876 3.122 0.823 0.774 0.879 3.187
DCN + Attentive ConvLSTM 0.809 0.784 0.878 3.142 0.841 0.786 0.885 3.256
DCN + Learned Priors 0.824 0.782 0.882 3.209 0.840 0.784 0.885 3.235
DCN + Attentive ConvLSTM + Learned Priors 0.830 0.782 0.883 3.219 0.844 0.787 0.886 3.260

MIT1003

Plain CNN 0.638 0.625 0.889 2.147 0.667 0.631 0.895 2.255
Dilated Convolutional Network 0.718 0.596 0.906 2.704 0.748 0.609 0.902 2.845
DCN + Attentive ConvLSTM 0.749 0.601 0.908 2.812 0.756 0.613 0.912 2.860
DCN + Learned Priors 0.750 0.621 0.908 2.805 0.746 0.613 0.908 2.816
DCN + Attentive ConvLSTM + Learned Priors 0.757 0.613 0.910 2.852 0.768 0.617 0.913 2.893

CAT2000

Plain CNN 0.751 0.546 0.862 1.886 0.819 0.538 0.870 2.052
Dilated Convolutional Network 0.791 0.548 0.870 2.067 0.881 0.527 0.877 2.368
DCN + Attentive ConvLSTM 0.851 0.537 0.874 2.253 0.882 0.528 0.878 2.367
DCN + Learned Priors 0.877 0.532 0.876 2.328 0.885 0.528 0.878 2.377
DCN + Attentive ConvLSTM + Learned Priors 0.879 0.530 0.877 2.347 0.888 0.534 0.879 2.375

combination of saliency metrics and four other loss functions:
the Euclidean loss, the Cosine Distance, the χ2 Divergence
and the Total Variation Distance. Also in this case, our loss
function achieves a better balance among all metrics. The
gap with respect to all other traditional losses is particularly
evident on the NSS metric, while, on all other metrics, the
proposed combined loss, if it does not reach the best results,
it is very close to them.

Overall, our combined loss reaches competitive results on
all metrics differently from the other loss functions. For this
reason, results of all following experiments are obtained by
training the network with our combination of loss.

B. Model Ablation Analysis

We evaluate the contribution of each component of the
architecture, on SALICON, MIT1003 and CAT2000 validation
sets. To this end, we construct five different variations: the
plain CNN architecture without the last fully convolutional
layer (as a baseline), the Dilated Convolutional Network
(DCN), the DCN with the proposed ConvLSTM model, the
DCN with the proposed learned priors module and the final
version of our model with all its components.

Table II shows the results of the ablation analysis using both
versions of our model on three different datasets. The results
emphasize that the overall architecture is able to predict better
saliency maps in both SAM-VGG and SAM-ResNet variants
and each proposed component gives an important contribution
to the final performance on all considered datasets. In partic-
ular, on the SALICON dataset, it can be seen that there is a
constant improvement on all metrics. For example, the VGG
baseline achieves a result of 0.743 in terms of CC, while the
DCN achieves a relative improvement of 0.801−0.743

0.743 = 7.8%.
This result is further improved by 1% when adding the
Attentive ConvLSTM or by 2.9% when adding the learned

priors. The overall architecture adds an important improvement
of 2.6% to the DCN with the Attentive ConvLSTM and 0.7%
to the DCN with learned priors. The ResNet baseline, instead,
achieves a CC result of 0.771 that is improved by a 6.7% when
adding the dilated convolutions. The Attentive ConvLSTM and
the learned priors respectively add an improvement of 2.2%
and 2.1%. These results are further improved using the overall
architecture with all proposed components by 0.4% and 0.5%.

It is also noteworthy that, with our pipeline, a VGG-based
network and a ResNet-based network achieve almost the same
performance, so one of the two models can be equally chosen
according to speed and memory allocation needs, without
considerably affecting prediction performance.

Figure 7 shows some qualitative examples of saliency maps
predicted by our SAM-ResNet model and by only some of its
main components with respect to the groundtruth. As it can
be seen, there is a constant improvement of predictions which,
by adding our key components, are more qualitatively similar
to the groundtruth.

C. Contribution of the attentive model and learned priors

Table IV reports the performance of our model when using
the output of the Attentive ConvLSTM module at different
timesteps as input for the rest of the model. Results clearly
show that the refinement carried out by the Attentive model
results in better performance. No further significant improve-
ments were observed for t > 4: while CC, sAUC and AUC
almost saturated, NSS slightly decreased after four iterations.

To assess the effectiveness of our prior learning strategy, we
compare it with the approach in [14], in which a low resolution
prior map is learned and applied element-wise to the predicted
saliency map, after performing bilinear upsampling. We chose
to compare our solution to that in [14] because it is the only
other attempt to incorporate the center bias in a deep learning
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TABLE III
COMPARISON RESULTS BETWEEN OUR LEARNED PRIORS AND THAT PROPOSED IN [14] ON SALICON [40], MIT1003 [9] AND CAT2000 [59]

VALIDATION SETS.

SALICON MIT1003 CAT2000
CC sAUC AUC NSS CC sAUC AUC NSS CC sAUC AUC NSS

SAM-VGG (prior of [14]) 0.811 0.783 0.878 3.150 0.738 0.610 0.908 2.754 0.845 0.539 0.874 2.233
SAM-VGG (learned priors) 0.830 0.782 0.883 3.219 0.757 0.613 0.910 2.852 0.879 0.530 0.877 2.347
SAM-ResNet (prior of [14]) 0.840 0.785 0.884 3.249 0.766 0.609 0.912 2.899 0.886 0.528 0.878 2.386
SAM-ResNet (learned priors) 0.844 0.787 0.886 3.260 0.768 0.617 0.913 2.893 0.888 0.534 0.879 2.375

TABLE IV
RESULTS ON SALICON VALIDATION SET [40] WHEN USING THE OUTPUT
OF THE ATTENTIVE CONVLSTM MODULE AT DIFFERENT TIMESTEPS AS

INPUT OF THE REST OF THE MODEL.

T CC sAUC AUC NSS

SAM-VGG

1 0.821 0.777 0.884 3.168
2 0.827 0.777 0.883 3.224
3 0.828 0.781 0.883 3.226
4 0.830 0.782 0.883 3.219

SAM-ResNet

1 0.785 0.737 0.879 3.050
2 0.829 0.764 0.886 3.214
3 0.842 0.779 0.886 3.256
4 0.844 0.787 0.886 3.260

model without the use of hand-crafted prior maps. Results
on SALICON, MIT1003 and CAT2000 validation sets are
reported in Table III. Using multiple Gaussian learned priors,
instead of learning an entire prior map, with no pre-defined
structure, shows to be beneficial according to all metrics.

D. Comparison with state of the art

We quantitatively compare our method with state of the
art models on SALICON, MIT300 and CAT2000 test sets.
Not all saliency methods report experimental results on all
considered datasets. For this reason, comparison methods are
different depending on each dataset. We decide to sort model
performances by the NSS metric as suggested by the MIT
Saliency Benchmark [65], [67], [68].

Table V shows the results on the SALICON dataset in terms
of CC, sAUC, AUC and NSS. As it can be observed, our SAM-
ResNet solution outperforms all competitors by a big margin
especially on CC and NSS metrics and obtains the best result
also on the sAUC. In particular, our method overcomes the
other ResNet-based model [24] with an improvement of 1.5%
according to NSS metric, 1.3% and 0.4% according to CC
and sAUC. For a fair comparison with other methods, we also
include the results achieved by our SAM-VGG model. The
improvement with respect all other VGG-based methods is
even more significant than that obtained by the SAM-ResNet
model. In detail, our SAM-VGG overcomes all other VGG-
based methods with an improvement of 12.7% and 5.6%
according to NSS and CC metrics.

TABLE V
COMPARISON RESULTS ON SALICON TEST SET [40]. THE RESULTS IN

BOLD INDICATE THE BEST PERFORMING METHOD ON EACH EVALUATION
METRIC. (*) INDICATES CITATIONS TO NON-PEER REVIEWED TEXTS.

METHODS ARE SORTED BY THE NSS METRIC.

CC sAUC AUC NSS

SAM-ResNet 0.842 0.779 0.883 3.204
DSCLRCN [24] (*) 0.831 0.776 0.884 3.157
SAM-VGG 0.825 0.774 0.881 3.143
ML-Net [14] 0.743 0.768 0.866 2.789
MixNet [45] (*) 0.730 0.771 0.861 2.767
SU [42] 0.780 0.760 0.880 2.610
SalGAN [44] (*) 0.781 0.772 0.781 2.459
SalNet [23] 0.622 0.724 0.858 1.859
DeepGazeII [26] 0.509 0.761 0.885 1.336

With the proposed model, we have also participated to the
LSUN Challenge 2017, where we reached the first place on
the saliency prediction task3.

The results on MIT300 and CAT2000 datasets are respec-
tively reported in Tables VI and VII. Our method achieves state
of the art results on all metrics, except for the sAUC, on the
CAT2000 dataset surpassing other methods by an important
margin especially on SIM, CC, NSS and EMD metrics. On
the MIT300 dataset, instead, we obtain results very close to
the best ones.

Our model does not obtain a big gain in performance on
AUC metrics. This can be explained considering that the
AUC metrics are primarily based on true positives without
significantly penalizing false positives. For this reason, hazy
or blurred saliency maps like the ones predicted by [26]
achieve high AUC values [73], [34], despite being visually
very different from the groundtruth annotations, as we will
show in the following.

Qualitative results obtained by our models on SALICON
and MIT1003 validations sets, together with those of other
state of the art models, are shown in Figure 8. As it can be
noticed, our network is able to predict high saliency values
on people, faces, objects and other predominant cues. It also
produces good saliency maps when images do not contain
strong saliency regions, such as when saliency is concentrated
in the center of the scene or when images portray a landscape.

3https://competitions.codalab.org/competitions/17136

https://competitions.codalab.org/competitions/17136
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Fig. 8. Qualitative results and comparison with other state of the art models. Left images are from SALICON validation set [40], while right images are
from MIT1003 validation set [9].

TABLE VI
COMPARISON RESULTS ON MIT300 DATASET [64]. THE RESULTS IN BOLD

INDICATE THE BEST PERFORMING METHOD ON EACH EVALUATION
METRIC. (*) INDICATES CITATIONS TO NON-PEER REVIEWED TEXTS.

METHODS ARE SORTED BY THE NSS METRIC.

SIM CC sAUC AUC NSS EMD

DSCLRCN [24] (*) 0.68 0.80 0.72 0.87 2.35 2.17
SAM-ResNet 0.68 0.78 0.70 0.87 2.34 2.15
SAM-VGG 0.67 0.77 0.71 0.87 2.30 2.14
DeepFix [22] 0.67 0.78 0.71 0.87 2.26 2.04
SALICON [12] 0.60 0.74 0.74 0.87 2.12 2.62
PDP [13] 0.60 0.70 0.73 0.85 2.05 2.58
ML-Net [14] 0.59 0.67 0.70 0.85 2.05 2.63
SalGAN [44] (*) 0.63 0.73 0.72 0.86 2.04 2.29
iSEEL [43] 0.57 0.65 0.68 0.84 1.78 2.72
SalNet [23] 0.52 0.58 0.69 0.83 1.51 3.31
BMS [10] 0.51 0.55 0.65 0.83 1.41 3.35
Mr-CNN [39] 0.48 0.48 0.69 0.79 1.37 3.71
DeepGazeII [26] 0.46 0.52 0.72 0.88 1.29 3.98
GBVS [7] 0.48 0.48 0.63 0.81 1.24 3.51
eDN [25] 0.41 0.45 0.62 0.82 1.14 4.56

We notice, from a qualitative point of view, that the model can
sometimes infer the relative importance of different people in
the same scene, a human behaviour which saliency models
still struggle to replicate, as discussed in [74].

VI. CONCLUSION

We described a novel Saliency Attentive Model which
can predict human eye fixations on natural images. The
main novelty of the proposal is an Attentive Convolutional
LSTM specifically designed to sequentially enhance saliency
predictions. The same idea could potentially be employed
in other tasks in which an image refinement is profitable.
Furthermore, we captured an important property of human

TABLE VII
COMPARISON RESULTS ON CAT2000 TEST SET [59]. THE RESULTS IN

BOLD INDICATE THE BEST PERFORMING METHOD ON EACH EVALUATION
METRIC. (*) INDICATES CITATIONS TO NON-PEER REVIEWED TEXTS.

METHODS ARE SORTED BY THE NSS METRIC.

SIM CC sAUC AUC NSS EMD

SAM-ResNet 0.77 0.89 0.58 0.88 2.38 1.04
SAM-VGG 0.76 0.89 0.58 0.88 2.38 1.07
DeepFix [22] 0.74 0.87 0.58 0.87 2.28 1.15
MixNet [45] (*) 0.66 0.76 0.58 0.86 1.92 1.63
iSEEL [43] 0.62 0.66 0.59 0.84 1.67 1.78
BMS [10] 0.61 0.67 0.59 0.85 1.67 1.95
eDN [25] 0.52 0.54 0.55 0.85 1.30 2.64
GBVS [7] 0.51 0.50 0.58 0.80 1.23 2.99

gazes by optimally combining multiple learned priors, and
effectively addressed the downscaling effect of CNNs. The
effectiveness of each component has been validated through
extensive evaluation, and we showed that our model achieves
state of the art results on two of the most important datasets for
saliency prediction. Finally, we contribute to further research
efforts by releasing the source code and pre-trained models of
our architecture.
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