
1

Optimized Block-based Connected Components
Labeling with Decision Trees

Costantino Grana, Member, IEEE, Daniele Borghesani, and Rita Cucchiara, Member, IEEE,

Abstract—In this paper we define a new paradigm for 8-
connection labeling, which employes a general approach to
improve neighborhood exploration and minimizes the number
of memory accesses. Firstly we exploit and extend the decision
table formalism introducing OR-decision tables, in which multiple
alternative actions are managed. An automatic procedure to
synthesize the optimal decision tree from the decision table is
used, providing the most effective conditions evaluation order.
Secondly we propose a new scanning technique that moves on
a 2 × 2 pixel grid over the image, which is optimized by the
automatically generated decision tree. An extensive comparison
with the state of art approaches is proposed, both on synthetic
and real datasets. The synthetic dataset is composed of different
sizes and densities random images, while the real datasets are an
artistic image analysis dataset, a document analysis dataset for
text detection and recognition, and finally a standard resolution
dataset for picture segmentation tasks. The algorithm provides
an impressive speedup over the state of the art algorithms.

I. INTRODUCTION

CONNECTED component labeling is a fundamental task
in several image processing and computer vision appli-

cations, e.g. for identifying segmented visual objects or image
regions. Thus a fast and efficient algorithm, able to minimize
its impact on image analysis tasks, is undoubtedly very ad-
vantageous. Moreover, many applications where labeling is a
necessary processing step often have to deal with high reso-
lution images with thousands of labels: complex solutions for
document analysis, multimedia retrieval and biomedical image
analysis would benefit the speedup of labeling considerably.

The research efforts in labeling techniques have a very long
story, full of different strategies, improvements and results.
Some of these particular strategies were focused on taking
advantage of the specific hardware architectures by that time,
in terms of CPU and memory usage, trying to minimize
the number of comparisons, the necessary sorts, the cost of
the label management. Current computer architectures do not
suffer anymore of many resource limitations and have new
capabilities (in terms of memory capacity, CPU power, storage
access speed): modern approaches can take advantage of the
available resources and must only try to reduce memory access
time, the main bottleneck of current computer systems.

Although the first algorithms for connected components
labeling were proposed more than fifty years ago, only in
the last years new strategies provided significant performance

C. Grana, D. Borghesani and R. Cucchiara are with the Dipartimento di
Ingegneria dell’Informazione, Università degli Studi di Modena e Reggio
Emilia, Italy e-mail: {name.surname}@unimore.it

Manuscript received xxxx; revised xxxx.

improvements, in particular with the introduction of the Union-
Find approach for label equivalences resolution, array based
data structures and smarter neighborhood management.

This work aims at marking a new step forward. We propose
a new methodology to consider a generic near-neighborhood
task, as the connected components labeling, resuming the
“old” condition-action paradigm which can be effectively
described as a single entry decision table. Then we propose to
further enhance this tool introducing the OR-decision tables,
which enclose the possibility to represent more than one
(equivalent) action for each set of conditions. An automatic
procedure to select the most convenient alternative is proposed
to get back a single-entry decision table, and finally a boolean
optimization algorithm is adopted to automatically produce the
optimal decision tree in terms of number of evaluations, thus
access costs. Since this approach is fully automatic by design,
it can be safely extended to each near-neighborhood task with
a similar formalization. So, as matter of course, we approached
raster-scan labeling in a block-wise (instead of pixel-wise)
manner: our paradigm, applied as-it-is without any modifica-
tions, granted us significant performance improvements of the
neighborhood exploration in terms of memory access times,
compared to the state of the art. Moreover, we proved that our
algorithm is able to outperform the state of the art both in high
resolution images with thousands of labels and in standard
resolution images with fewer labels.

Tests have been carried out on four different large datasets:
a synthetic uniform noise dataset at different resolutions and
densities, a digital library of high resolution replicas of an
illuminated manuscript containing tenths of thousands of la-
bels, a selection of digitized book pages publicly available
on the Gutenberg Project website [1] and finally the Otsu
binarized version of the MIRFlickr dataset [2]. Each dataset
has a different amount of connected components, with peculiar
patterns and at different resolutions, to test the algorithm
in different situations. The OpenCV-compliant code and the
random dataset are available online [3].

The paper is organized as follows: in the next Section II we
introduce the basic concepts and notation used throughout the
paper. In Section III we provide a historical overview of the
different approaches to the problem of labeling, comparing
their properties and performances. Section IV proposes an
original view to the problem of labeling by means of decision
tables and decision trees, focusing on reducing the cost of
conditions testing, then Section V details our 2 × 2 block
neighborhood analysis. Finally Section VI demonstrates the
effectiveness of our approach with experiments on a wide
variety of images, in comparison with other state of the art



2

(a) (b) (c)

Fig. 1. Examples of binary image depicting text (a), its labeling considering
4-connectivity (b) and finally 8-connectivity (c)

methods. Concluding remarks are given in Section VII.

II. CONNECTED COMPONENTS LABELING

In order to clearly present our solution for the labeling prob-
lem, it is convenient to fix the basic notations and definitions
related to the concepts of neighborhood and connectivity.

Let’s call I an image defined over a two dimensional
rectangular lattice L, and I(p) the value at pixel p ∈ L, with
p = (px, py). The 4-neighborhood and the 8-neighborhood of
a pixel p can be respectively defined as:

N4(p) = {q ∈ L ∣ ∣px − qx∣ + ∣py − qy ∣ ≤ 1} (1)
N8(p) = {q ∈ L ∣ max(∣px − qx∣, ∣py − qy ∣) ≤ 1} (2)

In other words, N4 is the set of points with null or unitary city
block distance (∥⋅∥1 norm), while N8 is the set of points with
null or unitary chessboard distance (∥⋅∥∞ norm). Thus, two
pixels p and q are said to be 4-neighbors if q ∈ N4(p), which
also implies p ∈ N4(q), and they are said to be 8-neighbors
if q ∈ N8(p), which also implies p ∈ N8(q). Furthermore it is
clear that N4(p) ⊂ N8(p), i.e. if two pixels are 4-neighbors,
they are also 8-neighbors. We will write N to generically
identify a neighborhood when either definition could be used.

Given a subset S of L, we define the relation of connectivity
◇ between two pixels p, q ∈ S as:

p◇q⇔∃{si ∈ S ∣ s1 = p, sn+1 = q, si+1 ∈ N(si), i = 1, . . . , n},
(3)

that is if it is possible to find a sequence of neighboring points
of S starting from p and leading to q [4]. Thus we say that p
is connected to q if the relation p◇q is satisfied. Connectivity
is an equivalence relation, since the properties of reflexivity,
symmetry and transitivity hold. A subset C of L, defined by a
common property obtained from the pixel values, is called a
connected component if p◇q,∀p, q ∈ C, i.e. if any two points
of the subset are connected.

Usually, labeling algorithms deal with binary images, i.e.
images where points can only take binary values. Important
or meaningful regions, such as the result of segmentation
algorithms, are called foreground (F), while the other pixels
constitute the background (B). Conventionally we will assign
value 1 to foreground pixels and 0 to background pixels, so

F = {p ∈ L ∣ I(p) = 1} (4)
B = {p ∈ L ∣ I(p) = 0}. (5)

Clearly, F∪B = L and F∩B = ∅. Since the property of interest
is normally to be part of the foreground with respect to the
background, the common choice in binary images is to choose
8-connectivity for the foreground regions, and 4-connectivity
for background regions. This choice better matches our usual

P Q R

S X

p q r

s x

a b c d e f

g h i j k l

m n o p

q r s t

a b c d e f

g h i j k l P Q R p q rg h i j k l

m n o p

q r s t S X
P Q R

s x
p q r

Fig. 2. The pixel mask M(x) used to compute the label of pixel x, and to
evaluate possible equivalences in raster scan techniques.

perception of distinct objects, as in Fig. 1. Accordingly to the
Gestalt Theory of perception, our senses operate the closure
property perceiving objects as a whole even if they are loosely
connected as happens in the 8-connectivity case, so that we
can easily read the letters Fig. 1(c).

Labeling algorithms take care of the assignment of a unique
identifier (an integer value, namely label) to every connected
component of the image, in order to give the possibility to
refer to it in the next processing steps. It is common practice
to reserve label 0 for background pixels. Analogously to the
definition of image I , we also define the function L ∶ L → N0,
which maps a pixel to a label identifying the connected
component to which it belongs. Depending on the search
order and the region connectivity, during a labeling algorithm
execution two pixels in the same connected component could
be assigned provisionally different non zero labels: this implies
that the two labels must be considered equivalent. Formally,
given p, q ∈ F , p◇q⇔ L(p) ≡ L(q).

We can define the equivalence class of a label L(p) as

[L(p)] = {λ ∈ N ∣ λ ≡ L(p)}. (6)

It can be observed that if L(p) ≡ L(q) then [L(p)] = [L(q)],
further implying that L(p) ∈ [L(q)] and L(q) ∈ [L(p)].

The majority of images are stored in raster scan order,
so the most common technique for connected components
labeling applies sequential local operations in that order, as
firstly introduced in [4]. This is classically performed in 3
steps:

1) First image scan (provisional labels assignment and
collection of label equivalences);

2) Equivalences resolution (equivalence classes creation);
3) Second image scan (final label assignment).

During the first step, L(x) ← 0,∀x ∈ B. Instead, for each pixel
x ∈ F , L(x) is evaluated by only looking at the labels of its
already processed neighbors. When using 8-connectivity, these
pixels belong to the scanning mask M(x) ⊂ N8(x), shown
in Fig. 2. More in detail, given x the pixel with coordinates
(i, j) in the lattice identified as x = li,j , we can defineM(x) =
{p = li−1,j−1, q = li,j−1, r = li+1,j−1, s = li−1,j}. As mentioned
before, during the scanning procedure, the same connected
component can be assigned different (provisional) labels, so
all algorithms adopt some mechanism to keep track of the
possible equivalences.

In the second step, all the provisional labels must be
segregated into disjoint sets, or disjoint equivalence classes. As
soon as an unprocessed equivalence is considered, a “merging”
between classes is needed, that is some operation which allows
to mark as equivalent all labels involved. Most of the recent



3

optimizations introduced in modern connected components
labeling techniques aim at increase the efficiency of this step.

Once the equivalences have been eventually solved, in the
third step a second pass over the image is performed in order
to assign to each foreground pixel the representative label of
its equivalence class. Usually, the class representative is unique
and is set to be the minimum label value in the class.

The disjoint set union problem (step 2) has been widely
studied during the past decades [5]. The problem consists of
maintaining a collection of disjoint sets under the operation of
union. More precisely, the problem is to perform a sequence
of operations of the following two kinds on disjoint sets:

union(A,B): Combine the two sets A and B into a new
set named A.
find(x): Return the name of the unique set containing the
element x.

The introduction of efficient Union-Find algorithms allows the
inclusion of the equivalences resolution step directly into the
first image scan, removing the need of collecting equivalences.
This constitutes the basic structure of all modern labeling
algorithms, which perform online equivalences resolution.

III. THE EVOLUTION OF LABELING ALGORITHMS: A
REVIEW

In this section, we provide a historical view of the different
literature works, discussing how they contributed to the current
state of the art, and how much they are still suitable for modern
architectures. This review does not aim to be comprehensive
of all the proposals, but mainly aims at providing an overview
of the more relevant research trends.

Two wide classes of labeling algorithms will not be covered
by our analysis. The first one is the class of parallel algorithms
which has been extensively studied up to the first half of the
’90s (see for instance [6]). These algorithms mainly address
the massive data parallelism of 80’s architectures and do not
readily apply to current common workstations parallelism,
such as instruction level, thread level and so on. The second
class comprehends algorithms defined for hierarchical image
representations (for example quadtrees [7]) initially studied
for accessing large images stored in secondary memory. We
excluded them because the vast majority of images is currently
stored in sequential fashion, since the large availability of main
memory in modern computer architecture do not limit their full
storage anymore.

In order to summarize this historical review, Fig. 3 proposes
a temporal positioning of the presented algorithms, classified
based on the methodology adopted for the scan over the
image. In the first row we list the approaches based on
iterated multiple scans of the image. The middle row lists
the approaches that, starting from the pioneering work of
Rosenfeld [4], exploit two scans only, while in the third row we
list some of the algorithms that are based on contour tracing
techniques, so exploiting a single scan over the image.

The first work proposed for image labeling dates back to
Rosenfeld et al. in 1966 [4]. This algorithm can be considered
the most classical approach to labeling, and it is based on
a raster scan of the image. It produces an output image

containing the labeling result, and it stores the “redundancies”
(i.e. equivalences) of the labels in an equivalences table with
all the neighborhood references. The redundancies are then
solved processing the table by repeatedly using an unspecified
sorting algorithm and removing redundant entries. Finally the
resulting labels are updated to the output image with a further
pass, exploiting the solved equivalences table. This method
requires an adequate memory allocation for the final image
and the equivalence table, and a high computational cost due
to the repeated use of sorting algorithms.

To tackle these limitations, in particular the memory re-
quirements, an improvement was proposed by Haralick et
al. [8]. This algorithm does not use any equivalences table
and no extra space, by iteratively performing forward and
backward raster scan passes over the output image to solve the
equivalences, exploiting only local neighborhood information.
This technique, although requiring very little memory, clearly
turns out to be computationally very expensive when the size
of the binary image to analyze increases.

Lumia et al. [9] observed that both previous algorithms
perform poorly on ’83 virtual memory computers because of
page faults, so they proposed a mix of the two approaches
trying to keep the equivalences table as small as possible
and saving memory usage. In this algorithm a forward and
a backward scan are sufficient to complete the labeling, but at
the end of each row the collected equivalences are solved and
another pass immediately updates that row labels. Therefore
four passes over the data are indeed used by this algorithm.
The technique to solve label equivalences was left unspecified.

Schwartz et al. [10] further explored this approach, in order
to avoid the storage of the output image, which would have
required too much memory. Thus they use a sort of run length
based approach (without naming it as such), which produces
a compact representation of the label equivalences. In this
way, after a forward and a backward scan, they can output
an auxiliary structure which can be used to infer a pixel label.

Samet et al. [11] were the first researchers who clearly
named the equivalence resolution problem as the disjoint-set
union problem, about twenty years ago. This is an important
achievement, since a quasi linear solution for this problem
is available: the so called Union-Find algorithm, from the
name of the basic operations involved. Also this algorithm is
executed in two passes. The first pass creates an intermediate
file consisting of image elements and equivalence classes
while the second pass processes this file in reverse order, and
assigns final labels to each image element. The proposal in
[11] was definitely complex, since it also targeted quad-tree
based image representations and it was aimed at not keeping
the equivalences in memory. Then in [12] a general definition
of this algorithm for arbitrary image representations has been
proposed in detail.

The Union-Find algorithm is the basis of most of the
modern approaches for label resolution. As a new pixel is
computed, the equivalence label is resolved: while the previous
approaches generally performed first a collection of labels and
at the end the resolution and the Union of equivalence classes,
this new approach guarantees that at each pixel the structure
is up to date.



4

Multiscan

Two scans

Contour tracing

2003

Suzuki [14]

1981

Haralick [8]

2005

Wu [15]

1996

(Fiorio) [16]

1983

Lumia [9]

1966

Rosenfeld [4]

1985

Schwartz [10]

1986

Samet [11]

1999

Di Stefano [13]

2005

Wu [15]

2007

He [17]

2008

He [18,19]

1980

Kruse [23]

1979

Cederberg 

[22]

2003

Chang [27]

1976

Morrin [21]

1981

Danielsson

[24]

1965

Clemens [20]

Fig. 3. Timeline showing the evolution of the labeling algorithms. Algorithms are referenced by first author name.

A relevant paper in this evolution is [13] where Di Stefano
et al. proposed an online label resolution algorithm with an
array-based structure to store the label equivalences. The array-
based data structure has the advantage to reduce the memory
required and to speed up the retrieval of elements without
the use of pointer dereferencing. They do not explicitly name
their equivalences resolution algorithm as Union-Find, and
their solution requires multiple searches over the array at every
Union operation.

In 2003, Suzuki et al. [14] resumed Haralick’s approach of
the multiscan strategy over the image, but with the inclusion
of a small equivalence array: they provided a linear-time
algorithm that in most cases requires 4 passes. The label
resolution is performed exploiting array-based data structures,
and each foreground pixel takes the minimum class of the
neighboring foreground pixels classes. An important addition
to this proposal is provided in an appendix in the form of
a LUT of all possible neighborhoods, which allows to reduce
computational times and costs by avoiding unnecessary Union
operations.

In 2005, Wu et al. in [15] defined an interesting optimization
to reduce the number of labels, in order to increase the perfor-
mance of Suzuki’s approach. They exploited a decision tree
to minimize the number of neighboring pixels to be visited in
order to evaluate the label of the current pixel. In a 8-connected
components neighborhood, among all the neighboring pixels,
often only one of them is sufficient to determine the label of
the current pixel. This work in particular inspired our proposal
to define a systematic way to minimize the comparisons, thus
the necessary Union and Find operations. In the same paper,
the authors proposed another strategy to improve the Union-
Find algorithm of Fiorio et al. [16] exploiting an array-based
data structure. For each equivalence array a path compression
is performed to compute the root, in order to directly keep
the minimum equivalent label within each equivalence array,
without requiring an additional stage as in Fiorio’s technique.

In 2007, He (in collaboration with Suzuki) proposed another
fast approach in the form of a two scan algorithm [17].
The data structure used to manage the label resolution is
implemented using three arrays in order to link the sets of
equivalent classes without the use of pointers. Adopting this
data structure, two algorithms have then been proposed: in [18]
a run-based first scan is employed, while in [19] a decision
tree (similarly to [15]) optimizes the neighborhood exploration
to apply merging only when needed.

Another group of researchers has taken a radically different
approach to this problem, starting from Clemens [20], which
in his Ph.D. thesis was one of the first to provide a link
between the concept of connected components labeling and
contour tracing. He described an hexagon tracing routine
(implemented in hardware) able to extract the outer contours
of a character, remove the interior with a mathematical mor-
phology approach, and further tracing the inner edges. Strictly
speaking, his proposal is not a labeling algorithm, but provides
the basis later employed for this task.

In 1976, Morrin [21] developed a binary image compression
technique, which is composed by raster scanning and contour
following technique. As soon as the raster scan encounters a
boundary the algorithm starts to follow it, peeling off one layer
of pixels after another until the object is exhausted. Raster scan
is then resumed. Only the first boundary trace is stored as a
contour. While effective and requiring a minimum amount of
auxiliary memory, the multiple contour following steps are
rather time consuming.

Cederberg [22] in 1979 proposed a raster scan approach,
which is able to produce a set of partial contours, max
points and min points. These local information allow to later
reconstruct the complete contour. In his work a solution
for producing an ordered tree of contour inclusions is also
provided, and this could be employed to assign different labels
to the various connected components, but no detail is given
on the computational complexity for this specific task.

In 1980, Kruse [23] proposed a fast stack based algorithm
for segmentation of connected components in binary images.
In his terminology, segmentation is a sort of superset of label-
ing, in which not only every foreground connected component
is given a different label, but also every background connected
component is distinguished. Segmentation may be obviously
used to obtain labeling if needed. His approach again uses a
raster scan plus contour following routine. After encountering
the first object pixel, the algorithm starts following the contour,
and during this stage it tags the pixels having a background
pixel on the right, then the raster scan is resumed. When a
labeled pixel is encountered, its label is pushed on a stack
(we are “entering” a connected component). Later, when we
meet a tagged pixel, we know that we are “exiting” that
component and we can pop the stack. The combined use of
stack information and tagging allows to completely reconstruct
the original image components.

Danielsson [24] in 1981 further improved this approach



5

avoiding the need of both the stack and the tagging, by
substituting the tag with a special temporary “0” label assigned
to the first background pixel, immediately to the right of
a contour point, which would have been tagged by Kruse’s
algorithm. Both these algorithms have been extended to the
non binary case [25], [26].

Later the most relevant work on this branch of research is
given by Chang et al. [27] in 2003. Their approach strongly
resembles Danielsson’s and it is based on a single pass over the
image exploiting contour tracing. Their technique clockwise
tags all pixels in both the contour and the immediately external
background in a single operation. When during the raster scan
an untagged boundary is found, a counter clockwise contour
tracing is performed for internal contours. This technique
proved to be very fast, also because the filling of the con-
nected components (label propagation after contour following)
is cache-friendly for images stored in a raster scan order.
Moreover the algorithm can naturally output the connected
components contours, if needed.

As far as we write, the algorithm presented in 2008 by
He et al. [19] represents the state of the art for connected
components analysis. This proposal is based on a raster scan
over the image and it embraces the Union-Find approach
for equivalences resolution, performed on-line as soon as the
equivalences are found. There are two key novelties in this
algorithm.

The first novelty is the fast technique implemented to
perform the Union-Find, described in [17]. It is based on
a set of three arrays in order to link the sets of equivalent
classes without the use of pointers. An rl table array contains
information about the representative label of each class, a
n label array contains the index of the next equivalent label,
thus providing a linked list structure, finally a t label array
contains the index of the last label of the list. This array-
based structure turns out to be very effective, combining the
performances of arrays with the benefits of a list-like structure
in order to solve equivalences without scanning an entire
array of equivalences. The second novelty is the optimization
performed for the neighborhood computation. Accessing in a
clever way the labels of the neighboring pixels, the number of
resolve operations (the name used in [19] for the union opera-
tion) to perform are minimized, avoiding to solve equivalences
already solved by previous steps of the algorithm. In this
way, authors significantly improved performance, since these
actions are the most time consuming computations within the
algorithm. In this paper we adopted the same efficient data
structure for label resolution, but we mainly focus on the
neighborhood computation proposing a whole new way to
speed up the process.

IV. DECISION TABLES AND DECISION TREES

The procedure of collecting labels and solving equivalences
may be described by a command execution metaphor: the
current and neighboring pixels provide a binary command
word, interpreting foreground pixels as 1s and background
pixels as 0s. A different action must be taken based on the
command received.

conditions actions

statement 
section

D
oe

s 
no

t p
ri
nt

Re
d 
Li
gh
t F

la
sh
in
g

Pr
in
te
r U

nr
ec
og
ni
se
d

Ch
ec
k 
Po

w
er
 C
ab
le

Ch
ec
k 
Pr
in
te
r C

ab
le

Ch
ec
k 
D
riv

er

Ch
ec
k 
Re

pl
ac
e 
In
k

Ch
ec
k 
Pa
pe

r J
am

c1 c2 c3 a1 a2 a3 a4 a5

entry 
section

r1 0 0 0

r2 0 0 1 1

r3 0 1 0 1

r4 0 1 1 1 1

r5 1 0 0 1

r6 1 0 1 1 1 1

r7 1 1 0 1 1

r8 1 1 1 1 1 1
condition 
outcomes

action entries

Fig. 4. A decision table example, showing a hypothetical troubleshooting
checklist for solving printing failures. Note that we use a vertical layout,
which is more suitable when dealing with a large number of conditions.

We may identify four different types of actions: no action
is performed if the current pixel does not belong to the
foreground, a new label is created when the neighborhood is
only composed of background pixels, an assign action gives
the current pixel the label of a neighbor when no conflict
occurs (either only one pixel is foreground or all pixels share
the same label), and finally a merge action is performed to
solve an equivalence between two or more classes and a
representative is assigned to the current pixel. The relation
between the commands and the corresponding actions may be
conveniently described by means of a decision table [28].

A decision table is a tabular form that presents a set of
conditions and their corresponding actions. A decision table is
divided into four quadrants: an example is provided in Fig. 4.
The statement section reports a set of conditions which must
be tested and a list of actions to perform. Each combination of
condition entries (condition outcomes) is paired to an action
entry. In the action entries, a column is marked, for example
with a “1”, to specify whether the corresponding action is to
be performed. If the conditions outcomes may only be true
or false, the table is called limited entry decision table [29].
These will be the tables type used throughout this manuscript.

More formally, we call c1, . . . , cL the list of conditions. If
we call S the system status (the lights on a printer, the service
quality, the current pixel neighborhood, etc...), a condition
is a function of S which returns a boolean value. The list
of actions is identified by a1, . . . , aM , where an action is a
procedure or operation which can be executed. Every row in
the entry section is called a rule r1, . . . , rN , which is a pair of
boolean vectors of condition outcomes oi

j and action entries
ei
k, denoting with i the rules index, with j the conditions index

and with k the actions index. A decision table may thus be
described as

DT = {r1, . . . , rN} = {(o1,e1), . . . , (oN ,eN)} (7)



6

The straightforward interpretation of a decision table is that
the actions ak corresponding to true entries ei

k should be
performed if the outcome oi is obtained when testing the
conditions. Formally, given the status S, we write

c(S) = oi⇔ oi
j = cj(S),∀j = 1, . . . , J , (8)

so

if c(S) = oi then execute {ak ∣ ei
k = 1}k=1,...,K .

(9)
The execute operation applied to a set of actions {ak}, as

in Eq. 9, classically requires the execution of all the actions in
the set, that is all actions marked with 1s in the action entries
vector: we call this behavior an AND-decision table. For our
problem we define a different meaning for this operation. We
define an OR-decision table, in which any of the actions in
the set may be performed in order to satisfy the corresponding
condition.

Note that this situation does not imply that the actions
are redundant, in the sense that two or more actions are
always equivalent. In fact, the result of doing any action in
the execution set is the same only when a particular condition
is verified.

A. Modeling raster scan labeling with decision tables

In order to describe the behavior of a labeling algorithm
with a decision table, we need to define the conditions to
be checked and the corresponding actions to take. For this
problem, as we already mentioned, the conditions are given
by the fact that the current pixel x and the four neighboring
ones in maskM(x) belong to the foreground. The conditions
outcomes are given by all possible combinations of 5 boolean
variables, leading to a decision table with 32 rules. The actions
belong to four classes: no action, new label, assign and merge.
Fig. 5 shows a basic decision table with these conditions and
actions.

The action entries are obtained applying the following
considerations:

1) no action if x ∈ B;
2) L(x) = new label if x ∈ F ∧M(x) ⊂ B;
3) L(x) = L(y) if x ∈ F ∧ ∃! y ∈ M(x) ∣ y ∈ F ;
4) L(x) =merge({L(y) ∣ y ∈ M(x) ∩ F}) otherwise

Using these considerations the equivalences are solved and a
representative (provisional) label is associated to the current
pixel x. The process then moves ahead to the next pixel and
the next neighborhood accordingly.

Firstly, merge operations have a higher computational cost
with respect to an assign, so we should reduce at the min-
imum the number of these operations in order to improve
the performance of labeling. Similarly a merge between two
labels is computationally cheaper than a merge between three
labels. Thus, exploiting the OR-decision table formalism, we
can substitute whenever is possible all merge operations with
equivalent assign operations. In the matter of facts, merging an
equivalence class with itself returns the same class again: for
example when p, q ∈ F and L(p) ≡ L(q), the merge operation
has no effect and assigning a representative label from the

p q r

s x

x p q r s no
 a

ct
io

n

ne
w

 la
be

l

x 
= 

p

x 
= 

q

x 
= 

r

x 
= 

s

x 
= 

p+
q

x 
= 

p+
r

x 
= 

p+
s

x 
= 

q+
r

x 
= 

q+
s

x 
= 

r+
s

x 
= 

p+
q+

r

x 
= 

p+
q+

s

x 
= 

p+
r+

s

x 
= 

q+
r+

s

x 
= 

p+
q+

r+
s

0 - - - - 1
1 0 0 0 0 1
1 1 0 0 0 1
1 0 1 0 0 1
1 0 0 1 0 1
1 0 0 0 1 1
1 1 1 0 0 1
1 1 0 1 0 1
1 1 0 0 1 1
1 0 1 1 0 1
1 0 1 0 1 1
1 0 0 1 1 1
1 1 1 1 0 1
1 1 1 0 1 1
1 1 0 1 1 1
1 0 1 1 1 1
1 1 1 1 1 1

assign merge

Fig. 5. The initial decision table providing a different action for every pixel
configuration. To produce a more compact visualization, we reduce redundant
logic by means of the indifference condition “-”, whose values do not affect
the decision and always result in the same action. In the condition section the
pixel letter means that we have to test if that pixel belongs to the foreground.
In the action section, the “+” operator is used to indicate a merge between
the labels of pixels indicated, while the “=” means that pixel x is assigned
any of the labels of the right operands.

rita…

x p q r s no
 a

ct
io

n

ne
w

 la
be

l

x 
= 

p

x 
= 

q

x 
= 

r

x 
= 

s

x 
= 

p+
r

x 
= 

r+
s

0 - - - - 1
1 0 0 0 0 1
1 1 0 0 0 1
1 0 1 0 0 1
1 0 0 1 0 1
1 0 0 0 1 1
1 1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 0 1 1 1
1 0 1 1 0 1 1
1 0 1 0 1 1 1
1 0 0 1 1 1
1 1 1 1 0 1 1 1
1 1 1 0 1 1 1 1
1 1 0 1 1 1 1
1 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

assign merge

Fig. 6. The resulting OR-decision table for labeling. Bold 1’s are selected
with the procedure described in section IV-C

merge outcome or any of L(p) or L(q) has the same result.
So in these cases all the action entries of L(x) = L(p), of
L(x) = L(q) and of L(x) =merge({L(p), L(q)}) should be
set to 1.

The problem with this reasoning is of course that we
would need to add a condition for checking if L(p) ≡ L(q),
complicating enormously the decision process, since every
condition doubles the number of rules. But, is this condition
really necessary? No, because we can further notice that if we
exploit an algorithm with online equivalences resolution, p and
q cannot have different labels. Since they are 8-connected,
if both of them are foreground, during the analysis of q a
label equivalent to L(p) would have been assigned to L(q).
This allows us to always remove merge operations between
8-connected pixels, substituting them with assignments of the
involved pixels labels.

Extending the same considerations throughout the whole



7

rule set, we obtain an effective “compression” of the table,
as shown in Fig. 6. To obtain the table, when an operation
could be substituted with a cheaper one, the more costly was
removed from the table. Most of the merge operations are
avoided, obtaining an OR-decision table with multiple alter-
natives between assign operations, and only in a single case
between merge operations. Moreover the reduction leads also
to the exclusion of many unnecessary actions (for example,
the merge between p and q) without affecting the algorithm
outcome.

Summarizing, connected components labeling based on OR-
decision tables means to retrieve the condition outcome given
the current status c(S) = oi and select one action among the
alternatives ak corresponding to ei

k = 1, with k = 1, . . . ,K.
More details regarding the heuristic adopted to select the final
single action will be discussed in Section IV-C.

B. Reducing the cost of conditions testing: decision trees

The definition of decision tables requires all conditions
c1, . . . , cL to be tested in order to select the corresponding
action to be executed. Testing the conditions of the decision
table has a cost which is related to the number of conditions
and to the computational cost of each test. If we assume that
each test has the same cost, which is true in our application,
the only parameter which can be optimized is the number of
conditions to be tested.

There are a number of cases in which not all conditions must
be tested in order to perform the corresponding action. For
example in the first row of the decision table of Fig. 6, if x ∈ B
all the other conditions are useless, since the outcome will
always be no action. This straightforward observation suggests
that the order with which the conditions are verified impacts on
the number of tests required, thus on the total cost of testing.

What we are now looking for is the optimal ordering of
conditions tests, which effectively produces a sequence of
tests, depending on the outcome of previous tests. This is well
represented by an optimal decision tree: the sequence requiring
the minimum number of tests corresponds to the decision tree
with the minimum number of nodes. The transformation of
the decision table in an optimal decision tree has been deeply
studied in the past and we use the Dynamic Programming
technique proposed by Schumacher [30], which guarantees to
obtain an optimal solution.

One of the basic concepts involved in the creation of a
simplified tree from a decision table is that if two branches
lead to the same action the condition from which they originate
may be removed. With a binary notation, if both the condition
outcomes 10110 and 11110 require the execution of action 4,
we can write that 1–110 requires the execution of action 4,
thus removing the need of testing condition 2, with the use
of a dash implies that both 0 or 1 may be substituted in that
condition, representing the concept of indifference. The saving
given by the removal of a test condition is called gain in the
algorithm, and we conventionally set it to 1.

The conversion of a decision table (with n conditions)
to a decision tree can be interpreted as the partitioning of
an n-dimensional hypercube (n-cube in short) where the

vertexes correspond to the 2n possible rules. Including the
concept of indifferences, a t-cube corresponds to a set of
rules and can be specified as an n-vector of t dashes and
n− t 0’s and 1’s. For example, 01–0– is the 2-cube consisting
of the four rules {01000,01001,01100,01101}. In summary,
Schumacher’s algorithm proceeds in steps as follows:

● Step 0: all 0-cubes, that is all rules, are associated to a
single corresponding action and a starting gain of 0; this
means that if we need to evaluate the complete set of
conditions, we do not get any computational saving.

● Step t: all t-cubes are enumerated. Every t-cube may be
produced by the merge of two (t−1)-cubes in t different
ways (for example 01–0– may be produced by the merge
of {01–00,01–01} or of {0100–,0110–}). For each of
these ways of producing the t-cube (denoted as s in the
following formulas) we compute the corresponding gain
Gs as

Gs = G0
s +G1

s + δ[A0
s −A1

s] (10)

where G0
s and G1

s are the gains of the two (t − 1)-cubes
in configuration s, and A0

s and A1
s are the corresponding

actions to be executed. δ is the Kronecker function that
provides a unitary gain if the two actions are the same or
no gain otherwise, modeling the fact that if the actions
are the same we “gain” the opportunity to save a test.
The gain assigned to the t-cubes is the maximum of all
Gs, which means that we choose to test the condition
allowing the maximum saving.
Analogously we have to assign an action to the t-cube.
This may be a real action if all rules of the t-cube
are associated to the same action, otherwise it is 0, a
conventional way of expressing the fact that we need to
branch to choose which action to perform. In formulas:

A = A0
s ⋅ δ[A0

s −A1
s] (11)

where s may be chosen arbitrarily, since the result is
always the same.

The algorithm continues to execute Step t until t = n, which
effectively produces a single vector of dashes. The tree may
be constructed by recursively tracing back through the merges
at each t-cube. A leaf is reached if a t-cube has an action
A ≠ 0.

C. Action selection in OR-decision tables

To produce an optimal tree, the described algorithm [30]
requires a decision table where every rule leads to a single
action, that we will call single action decision table. This
requirement forces us to convert the previously described
decision tables into this representation. Starting from an AND-
decision table, a single action decision table is straightforward
to obtain: for every distinct row of action entries ei we can
define a complex action in the form of the set of actions
Al = {ak ∣ ei

k = 1}k=1,...,K . The execution of Al requires
the execution of all actions in Al. Now we can associate to
every condition outcome an integer index, which points to the
corresponding complex action.

Instead in OR-decision tables only one of the different
alternatives provided in ei must be selected. While an arbitrary



8

Algorithm 1 Greedy selection of the actions to perform in
OR-decision tables

1: I = {1, . . . ,K} ▷ Define actions indexes set
2: while I ≠ ∅ do
3: k∗ ← argmax

k∈I

N

∑
i=1
ei
k ▷ Find most frequent action

4: for i = 1, . . . ,N do ▷ Remove equivalent actions
5: if ei

k∗ = 1 then
6: ei

k ← 0,∀k ≠ k∗
7: end if
8: end for
9: I = I − {k∗} ▷ This action has been done

10: end while

selection does not change the result of the algorithm, the
optimal tree derived from a decision table implementing these
arbitrary choices may be different. How do we select the best
combination of actions, in order to minimize the final decision
tree? Exhaustive search quickly becomes infeasible when the
number of conditions increases, thus we propose an heuristic
greedy procedure.

In accordance with the issues of boolean optimization in
combinatorial logic, the rationale behind our approach is that
the more rules require the execution of the same action, the
more likely it will be to find large k-cubes covering that action.
We propose a greedy approach: the number of occurrences
of each action entry is counted; iteratively the most common
one is selected, and for each rule where this entry is present
all the other entries are removed, until no more changes are
required. In case two actions have the same number of entries,
we arbitrarily chose the one with lower index. The resulting
table after applying this process is shown in Fig. 6, with bold
faces 1’s. The following Algorithm 1 formalizes the procedure.

The described approach does not always lead to an optimal
selection, but the result is often optimal or nearly optimal,
based on many different experiments. This is particularly true
when the distribution of the actions frequencies is strongly non
uniform. For example, from the original OR-decision table in
Fig. 6, it is possible to derive 3 456 different decision tables,
by selecting all permutations of equivalent actions. Using
Algorithm 1 only two actions are chosen arbitrarily, leading
to 4 possible equivalent decision trees. All of these have the
same number of nodes and are optimal (in this case we were
able to test all of the 3 456 possibilities). One of these trees
is the one described by He et al. in [19].

In his proposal, He et al. summarize the alternatives in a
truth table, then employ a Karnaugh map to provide a synthesis
of the logic function under which the resolve operation may
be avoided. This logic function requires all nearby pixels, so
He’s approach is to manually derive an optimal ordering on
the conditions to be checked, giving a short circuit exit in
some cases.

In conclusion, we provided an algorithmic solution to the
optimal neighborhood exploration problem, which is equiv-
alent to the state of the art. Nevertheless, with respect to
previous approaches, our solution has an important added
value: it can be naturally extended to larger problems, without

P Q R

S X

p q r

s x

a b c d e f

g h i j k l

m n o p

q r s t

a b c d e f

g h i j k l P Q Rg h i j k l

m n o p

q r s t S X
P Q R

(a)

P Q R

S X

p q r

s x

a b c d e f

g h i j k l

m n o p

q r s t

a b c d e f

g h i j k l P Q Rg h i j k l

m n o p

q r s t S X
P Q R

(b)

Fig. 7. The mask used for 2 × 2 block based labeling is shown. (a) gives
the identifiers of the single pixels employed in the algorithm (a, f, l and q are
not used), while (b) provides the blocks identifiers.

requiring any empirical workaround. In the following we in-
troduce a novel approach to neighborhood exploration, which
takes advantage of the described technique.

V. 2 × 2 BLOCK NEIGHBORHOOD ANALYSIS

The availability of the previously described technique allows
us to enlarge our neighborhood exploration window, with the
aim to further speed up the connected components labeling
process. As previously reported in [31], the key idea of our
proposal starts from two very straightforward observations: i)
when using 8-connection, the pixels of a 2 × 2 square are all
connected to each other and ii) a 2 × 2 square is the largest
set of pixels in which this property holds. This implies that
all foreground pixels in a the block will share the same label
at the end of the computation. For this reason we propose to
scan the image moving on a 2×2 pixel grid applying, instead
of the classical neighborhood of Fig. 2, an extended mask of
five 2 × 2 blocks, as shown in Fig. 7.

Scanning the image with this larger grain has the advantage
to allow the labeling of four pixels at the same time. The
number of provisional labels created during the first scan is
roughly reduced by a factor of four, and we need to apply
much less unions, since labels equivalence is implicitly solved
within the blocks. Moreover a single label is stored for the
whole block.

On the other hand, the neighborhood to consider now is
much larger. The standard procedure (that is to consider all the
pixels in the neighborhood) greatly increases computational
time due to the number of memory accesses and merge oper-
ations required. Likewise a manual approach for an effective
neighborhood exploration is unfeasible since we must deal
with much more than 5 pixels for each labeling operation, and
the amount of combinations to explore is enormous. But the
general procedure described in the previous section is designed
to provide an effective way to face the optimization in this
situation.

The new scanning procedure may require also the same
pixel to be checked multiple times, but the impact of this
problem is greatly reduced by our optimized pixel access
scheme. Finally, a second scan requires to access again the
original image to check which pixels in the block require their
label to be set. Overall the advantages will be shown to largely
overcome the additional work required in the following stage.

Employing all pixels in the new mask of Fig. 7, we would
need to work with 20 pixels: for this reason, the decision



9

table would have L = 20 conditions, and N = 220 possible
configurations of condition outcomes. However, we can notice
that not all those pixels are necessary to compute labeling
information. In particular pixels a, f, l, q do not provide 8-
connection between blocks of the mask and can be ignored.
We thus need to deal with L = 16 pixels (thus conditions), for
a total amount of 216 possible combinations.

Since manually specifying the action entries for all 65 536
combinations is impractical, we choose not to directly deal
with the condition outcomes but abstracting the relations
between blocks. For this reason, given two blocks X and Y ,
we introduce the concept of block connectivity &, defined as

X&Y ⇔∃x ∈X ∩F , y ∈ Y ∩F ∣ x ∈ N(y) (12)

Block connectivities provide sufficient information to perform
labeling: the connectivity between two blocks implies that all
foreground pixels of the two blocks share the same label.
For the sake of clarity we will call pixel based decision
table (PBDT) the decision table defined over the 16 pixels
conditions, and block based decision table (BBDT) the one
defined over the block neighborhoods.

Similarly to the scanning mask in Fig. 2, we call each block
with the corresponding uppercase letter: P = {a, b, g, h}, Q =
{c, d, i, j}, R = {e, f, k, l}, S = {m,n, q, r}, X = {o, p, s, t},
as shown in Fig. 7. Block X corresponds to the current
block under analysis. Specifically, we define the following
conditions:
c1: X&P def= h ∈ F ∧ o ∈ F
c2: X&Q def= (i ∈ F ∨ j ∈ F) ∧ (o ∈ F ∨ p ∈ F)
c3: X&R def= k ∈ F ∧ p ∈ F
c4: X&S def= (n ∈ F ∨ r ∈ F) ∧ (o ∈ F ∨ s ∈ F)
Further analysis evidences that blocks have some interdepen-
dencies: to completely describe the pixels connectivities, we
must consider not only the connectivity relation between the
current block X and each individual neighboring block, but
also all the connectivity relation between the blocks. In this
new perspective we define four additional conditions:
c5: P &Q def= (b ∈ F ∨ h ∈ F) ∧ (c ∈ F ∨ i ∈ F)
c6: Q&R def= (d ∈ F ∨ j ∈ F) ∧ (e ∈ F ∨ k ∈ F)
c7: S&P def= (g ∈ F ∨ h ∈ F) ∧ (m ∈ F ∨ n ∈ F)
c8: S&Q def= i ∈ F ∧ n ∈ F
A last condition which needs to be considered is whether block
X contains any foreground pixel:
c9: X ∈ F def= o ∈ F ∨ p ∈ F ∨ s ∈ F ∨ t ∈ F
We have eventually defined 9 boolean conditions, with a total
amount of 512 combinations, which allow us to convey the
same knowledge of the PBDT, with an affordable action entries
definition.

For each condition outcome oi in the BBDT, we can count
the amount of its occurrences Ooi in the pixel based one.
Ooi = 0 denotes a condition outcome that turns out to be im-
possible in practice, so we can remove the corresponding rule
from the BBDT. Only 192 condition outcomes are effectively
possible.

To construct the BBDT we start considering that whenever
condition c9 is not satisfied no action should be performed,
and when X ⊂ F , X /&P , X /&Q, X /&R, and X /& S a new

l1 l2

l1 l2

l1 ?

l1 ?

(a)

l1 l2

l1 l2

l1 ?

l1 ?

(b)

Fig. 8. Example of a complex merging situation: the binary image (a) and
the two sets of neighboring blocks with a common label (b).

label should be created. When instead only one of X&P , X&Q,
X&R, or X&S is verified, we must perform an assign operation.
What is important here is that this does not imply exactly
the assignment of the neighboring block label to L(X): we
can assign L(X) the label of any block directly or indirectly
connected to X , i.e. the neighbor or any of its neighbors. For
example, in Fig. 17, the condition outcomes 1 0001 0001,
that is the case in which X &S and S &Q but X /& Q, we
can arbitrarily choose to perform the action L(X) ← L(S) or
L(X) ← L(Q), which translates to the action entry shown.

The same approach may be applied to all other combi-
nations, explicitly solving the connected component problem
between the blocks. The labels of the connected components
are then merged if any of the composing blocks is a neighbor
of X . As before, the labels to be assigned or merged may
be arbitrarily chosen from the any block of every connected
component.

An example will clarify the concept. Fig. 8(a) depicts a
possible pixel configuration in which two disjoint sets of labels
are connected to X . In particular X ∈ F and X &R and
X&S. Moreover Q&R and S&P . The corresponding condition
outcomes in Fig. 17 is 1 0011 0110, which leads to four
possible choices for the merging:

L(X) ←merge({L(P ), L(Q)})
L(X) ←merge({L(P ), L(R)})
L(X) ←merge({L(Q), L(S)})
L(X) ←merge({L(R), L(S)})

These choices are obtained selecting one block from the
component with label l1 in Fig. 8(b) and the other from
the component with label l2. The output of merge will be
different, but the equivalence class will be the same.

By applying these considerations to all 192 condition out-
comes, the OR-decision table in Fig. 17 is obtained. In order
to convert this table to a decision tree we need to produce
a single entry decision table by selecting a single non zero
action entry for every rule. Since Ooi is the probability to
observe in the PBDT a pixel configuration corresponding to
the condition outcome oi, we slightly modify the greedy
technique of Section IV-C in order to directly apply it to the
BBDT. The line 3 of Algorithm 1 thus becomes

k∗ ← argmax
k∈I

N

∑
i=1
ei
k ⋅Ooi . (13)

In this way, a greater importance is assigned to the actions
that have a higher impact in the decision table, and are likely
to provide a more effective grouping of 1s.



10

After the application of Algorithm 1 to the BBDT, we
can produce the 65 536 rules PBDT, which contains a single
action to perform given any possible pixel configuration. The
Schumacher’s algorithm is finally applied to this decision
table, producing an optimal tree containing 210 nodes, with
211 leaves sparse over 14 levels. The code implementing the
sequence of these conditions was automatically generated and
an OpenCV compliant version is available online [3].

VI. RESULTS

Connected components labeling is a well-defined problem
that always yields to the same result: whatever algorithm has
to outcome the same number of labeled connected compo-
nents; differences over the corresponding label values can be
standardized in a second time with a common enumeration
procedure. The way in which the image is scanned and the
neighborhood is evaluated, and the type of data structures
exploited for equivalences resolution produce a number of
approaches that distinguish themselves only in terms of com-
putational time required. In this work, we state that our pro-
posal (Block Based Decision Tree labeling, BBDT in short),
provides the most efficient way to scan the images and evaluate
the connectivities, and in this Section we are going to show
several results in different application fields.

In order to propose a valuable comparison with the state of
the art, we used several large and very dissimilar datasets. We
will examine the more important and effective representative
of each general approach for labeling analyzed in the historical
overview proposed in Section III. In particular, we suggest a
comparison between the following approaches:

● Suzuki et al. [14] as more recent representative of the
Haralick’s multiscan approach, in particular with the LUT
optimization proposed to speedup the process.

● Di Stefano et al. [13] as a straightforward Union-Find
based approach with no particular optimizations included
except for the array-based data structures.

● Chang et al. [27] as more recent and faster representative
of the contour tracing based techniques.

● He et al. [19] as the more recent thus effective repre-
sentative of the classical two scans approach, which has
been proposed in 2008 as the fastest labeling algorithm
presented so far in literature.

For each of these algorithms, the minimum time over five
runs is kept in order to remove possible outliers due to other
task performed by the operating system. All algorithms of
course produced the same number of labels and the same
labeling on all images. The tests have been performed on a
Intel Core 2 Duo E6420 processor, using a single core for
the processing. The code is written in C++ and compiled on
Windows using Visual Studio 2008.

A. Synthetic dataset

Analogously to many recent works [19], [18], we produced
a dataset of black and white random noise square images
with 9 different foreground densities, from a low resolution of
32×32 pixels to a maximum resolution of 4096×4096 pixels.
Unlike past works on this subject, we also generated high

10,00

100,00

1000,00

10000,00

m
s

DiStefano

SuzukiMask

Chang

He256x256

512x512

1024x1024

2048x2048

4096x4096

0,01

0,10

1,00

100 1000 10000 100000 1000000 10000000 100000000

Pixels

BBDT labeling

32x32

64x64

128x128

256x256

(a)

Pixels DiStefano SuzukiMask Chang He BBDT labeling
1024 0.04 0.07 0.05 0.03 0.03
4096 0.12 0.24 0.18 0.08 0.07
16384 0.38 0.94 0.59 0.33 0.24
65536 1.61 3.86 2.17 1.23 0.94
262144 8.64 16.05 8.41 5.16 3.93
1048576 64.32 65.93 34.00 20.83 15.98
4194304 749.50 270.99 138.97 83.79 64.08
16777216 11817.45 1117.70 562.03 337.74 257.39

(b)

Fig. 9. Performance of the algorithms scaling the size of the image to label,
expressed in milliseconds. The reported value is the average time obtained
considering all images at all densities with that size.

resolution images to prove the scalability and the effectiveness
of our approach when the number of labels gets really high.
For every combination of size and density, 10 images were
produced for a total of 720 images. The dataset is available at
[3].

The resulting dataset gives us the possibility to evaluate
the performances of our approach and the other selected
algorithms, both in terms of scalability on the number of pixels
and in terms of scalability on the number of labels (density).
An example of density variation is provided in Fig.11.

Fig.9 shows how the different algorithms behave with
images with increasing sizes. The reported value is the average
time obtained considering all images at all densities with
that size. A linear dependency of time with respect to the
number of pixels is highlighted for all algorithms except for
Di Stefano’s approach which is fast only when the number of
pixels is relatively low. Our approach proved to be scalable
and able to outperform all the others in each experiment with
the increasing image size.

The second experiment proposed in Fig.10 highlights the
behavior of the algorithms varying the label densities. In this
representation, the worst case is reached around the middle
densities, because the number of labels and merges between
equivalence classes is higher. Lower densities present more
sparse labels and consequently less merges, while higher
densities present highly connected components with simpler
merges. Our approach evidences the best performance among
all the densities. Note that Di Stefano’s algorithms produces
as expected the worst performance in the middle densities.



11

100000

10000

m
s

DiStefano

SuzukiMask

Chang

He

1000
BBDT labeling

100

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Density

(a)

Density DiStefano SuzukiMask Chang He BBDT labeling

0.1 220.39 437.77 269.76 203.93 170.26

0.2 1675.87 750.24 458.26 280.65 233.90

0.3 20979.69 1177.14 602.74 358.43 285.36

0.4 55052.34 1474.81 682.86 417.17 323.05

0.5 24648.12 1328.63 753.90 429.66 327.13

0.6 2468.44 1378.83 756.97 414.91 311.12

0.7 531.95 1338.90 671.13 374.28 275.98

0.8 416.81 1232.17 522.46 315.00 224.76

0.9 363.46 940.79 340.20 245.65 164.91

(b)

Fig. 10. Performance of the algorithms varying the label densities, expressed
in milliseconds. The resolution used for this chart was 4096 × 4096.

Fig. 11. A sample collection of random images, in this case shown at
64×64 resolution, to which a variation on the threshold is performed in order
to produce different densities of labels.

B. Real datasets

To test the effective performance of the algorithms, we also
used three datasets composed of real world images, corre-
sponding to three possible applications of labeling (Fig. 13).

1) Borso d’Este Holy Bible: This bible is one of the most
important illuminated manuscript of the Italian Renaissance.
We are involved in a project of text detection and image seg-
mentation aimed at detecting the most valuable pictures within
the bible pages, and the connected components labeling is one
of the processing steps. In particular, the dataset exploited

Fig. 13. A sample collection of Otsu binarized version of the three real
dataset.

(a)

Chang He BBDT labeling
bigPattern 768.67 382.67 233.75
smallPattern 1115.98 495.04 294.55

(b)

Fig. 14. A pattern specifically designed to stress all the algorithms based on
contour tracing technique.

in this work is composed by the Otsu-binarized 1 versions
of 615 images of high resolution (3840x2886) pages, with
Gothic text, pictures and floral decorations. This dataset gives
us the possibility to test the connected components labeling
capabilities with very complex patterns at different sizes, with
an average resolution of 10.4 megapixels and 35,359 labels,
providing a challenging dataset which heavily stresses the
algorithms.

2) Gutenberg Project: This dataset is composed by 6105
high resolution scans of books taken from the Gutenberg
Project [1], with an average amount of 1.3 millions of pixels
to analyze and 2,568 components to label. This is a typical
application of document analysis and character recognition
where labeling is the necessary starting step. The connected
components identifies words, sub-words or characters.

3) MIRflickr: This dataset is composed by the Otsu-
binarized version of the MIRflickr dataset [2], publicly avail-
able under a Creative Commons License, containing 25,000
standard resolution images taken by Flickr. These images are
smaller (the average resolution is 0.17 megapixels), there are
fewer connected components (495 on average) and generally
less complex, so the labeling is easier to accomplish.

Performance tests in terms of the average time required to
label an image are shown in Fig. 12. As mentioned before, we
executed five runs keeping the minimum time sampled, then
we compute the average of the minimum times for all images
within each dataset. These tests show how our approach can
outperform all the other proposals on every dataset, starting
from high resolution images with thousands of labels down to
standard images with few labels. The speed-up with respect to
the second best algorithm is between 23% and 29%. It is also
interesting to notice that, in presence of a limited number of
labels, He’s approach is not always the second best.

The contour tracing algorithm proposed by Chang rises up
as a good competitor on each dataset. Anyway the perfor-
mances of this approach can be seriously compromised with
particularly elaborate patterns, whose contours are difficult

1The Otsu thresholding has been chosen only as an automatic and consistent
way to produce a binarized version the image



12

471

406 412

300

350

400

450

500

s

Bible (10.4Mpixels)

39,1
41,7

25

30

35

40

45

s

Gutenberg project (1.3Mpixels)

7,5 7,4

4,0
5

6

7

8

s

MIRFlickr (0.17Mpixels)

471

406

157

412

136

94

0

50

100

150

200

250

300

350

400

450

500

m
s

Bible (10.4Mpixels)

39,1
41,7

16,4
18,2 19,4

13,2

0

5

10

15

20

25

30

35

40

45

m
s

Gutenberg project (1.3Mpixels)

7,5 7,4

4,0

3,4

2,6
2,1

0

1

2

3

4

5

6

7

8

m
s

MIRFlickr (0.17Mpixels)

471

406

157

412

136

94

0

50

100

150

200

250

300

350

400

450

500

m
s

Bible (10.4Mpixels)

39,1
41,7

16,4
18,2 19,4

13,2

0

5

10

15

20

25

30

35

40

45

m
s

Gutenberg project (1.3Mpixels)

7,5 7,4

4,0

3,4

2,6
2,1

0

1

2

3

4

5

6

7

8

m
s

MIRFlickr (0.17Mpixels)

Fig. 12. Connected components labeling results on the Bible, the Gutenberg Project and MIRFlickr datasets, expressed in milliseconds.

to follow. An example is provided in Fig.14. This pattern,
connected in this manner, creates a very complex single
connected component that forces the contour tracing to follow
the entire image in the most time consuming way. We build
two artificial images using this pattern, with a challenging
resolution of 7000 × 5000; in particular, while the first image
contains a pattern size suitable for the typical mask of two-
scans labeling approaches, the second image used a larger
one. The results show that our approach still outperforms all
the others, employing respectively 233.75 and 294.55 ms to
complete the labeling. Overall, in the first image our algorithm
is 38.9% faster than He’s algorithm and 73.6% faster than
Chang’s, while in the second image we perform 40.5% faster
than best He’s and 71% faster than Chang’s.

C. Incremental contributions

In order to provide a deeper understanding of the relative
contributions (in terms of performance improvements) of the
two main novelties of this work, we also include a comparison
of our final algorithm (BBDT in the charts) against the
following approaches:

● The first He’s approach (He07), which highlights the
benefits of the Union-Find algorithm for labels resolution
implemented with the set of three arrays as referred in
[17]

● He’s state-of-the-art approach as proposed in [18], that
is the previous one with the addition of the decision tree
optimization (DT)

● The block based approach as proposed in [31] (BB), with
the aforementioned algorithm for label resolution

As reported in Fig. 15, we can highlight how the use of the
block based technique, applied side by side to the labels reso-
lution technique in [17], guarantees competitive performances
in comparison with the first He’s approach itself (performance
gain of 24.2% with the challenging Bible dataset). Later
introducing the decision tree optimization, both He’s and our
approaches get a significant performance improvement. It is
nevertheless interesting to notice that while the state-of-the-
art approach in [18] gets a 28.4% performance boost using
decision trees (DT vs He07), our approach (despite being

Algorithm Total accesses Label image accesses Binary image accesses
Chang 47.13 26.45 20.67
He 43.88 28.36 15.52

Our Approach 34.04 17.42 16.62

Fig. 16. Analysis of memory accesses required by the connected components
computation. The numbers are given in millions of accesses.

far more complex in terms of tree structure) gets an higher
performance boost (34.7%) over previous algorithm without
decision trees (BBDT vs BB).

D. Memory access requirements

To understand the reason of the good performance of our
proposal, we analyzed the memory accesses of each algorithm.
In particular, we focused on a comparison with the two more
representative algorithms in terms of memory access and thus
speed, that is He’s and Chang’s approaches.

We performed these tests on the Bible dataset, and computed
the average number of accesses to the label image (i.e. the
image containing the provisional and then the final labels for
the connected components), the average number of accesses
to the binary image to be labeled and finally the sum of the
two contributions. As shown in Fig.16, the reason of the great
performances of our approach is mainly due to a significantly
lower number of accesses to memory. In particular, due to
the optimization in the neighborhood computation and the 2×
2 scanning approach, we can access much less frequently to
the label image in order to extract the label of a particular
block (thus group of pixels), maintaining quite as much as
He’s accesses to the original binary image. Globally, we can
save 22% of accesses with respect to He’s approach and the
27% of accesses with respect to Chang’s approach.

VII. CONCLUSIONS

In this paper we presented a novel approach to connected
components analysis able to improve the performance of all
existing approaches between 23% and 29% on average. Firstly,
an effective modeling of the problem by means of decision
tables is proposed, with the introduction of the OR-decision
table to formalize the situation in which multiple alternative



13

190

144
136

120

140

160

180

200

Bible (10.4Mpixels)

23,2

17,2

19,4

13 2
15

20

25

Gutenberg project (1.3Mpixels)

3,6

3,1

2,6

3

3

4

4

MIRFlickr (0.17Mpixels)

190

144
136

94

20

40

60

80

100

120

140

160

180

200

m
s

Bible (10.4Mpixels)

23,2

17,2

19,4

13,2

5

10

15

20

25

m
s

Gutenberg project (1.3Mpixels)

3,6

3,1

2,6

2,1

1

1

2

2

3

3

4

4

m
s

MIRFlickr (0.17Mpixels)

190

144
136

94

0

20

40

60

80

100

120

140

160

180

200

He07 BB DT BBDT

m
s

Bible (10.4Mpixels)

23,2

17,2

19,4

13,2

0

5

10

15

20

25

He07 BB DT BBDT

m
s

Gutenberg project (1.3Mpixels)

3,6

3,1

2,6

2,1

0

1

1

2

2

3

3

4

4

He07 BB DT BBDT

m
s

MIRFlickr (0.17Mpixels)

Fig. 15. The direct comparison between the two He’s approaches (He07 and DT in the charts) and the two main evolutions of our approach, first with only
block based optimization (BB), then with also the decision tree optimization (BBDT).

actions could be performed. A greedy procedure to reduce
this table into a single entry decision table is proposed, and
finally an automatic decision tree synthesis is implemented to
obtain the optimal arrangment of conditions to verify. In order
to speed up the neighborhood computation, a neighborhood
scanning optimization is performed enlarging the scanning
mask of pixels to 2 × 2 blocks. The proposed modeling
methodology is particularly effective even in this case where
the number of combination is very high. The experimental
results evidence how our approach is faster than all other
techniques proposed in literature.

REFERENCES

[1] Project Gutenberg. [Online]. Available: http://www.gutenberg.org
[2] M. J. Huiskes and M. S. Lew, “The MIR Flickr Retrieval Evaluation,”

in MIR ’08: Proceedings of the 2008 ACM International Conference
on Multimedia Information Retrieval. New York, NY, USA: ACM,
2008. [Online]. Available: http://press.liacs.nl/mirflickr/

[3] Proposed labeling algorithm. [Online]. Available:
http://imagelab.ing.unimore.it/imagelab/labeling.asp

[4] A. Rosenfeld and J. L. Pfaltz, “Sequential operations in digital picture
processing,” Journal of ACM, vol. 13, no. 4, pp. 471–494, 1966.

[5] Z. Galil and G. F. Italiano, “Data structures and algorithms for disjoint
set union problems,” ACM Computing Surveys, vol. 23, no. 3, pp. 319–
344, 1991.

[6] Y. Han and R. A. Wagner, “An efficient and fast parallel-connected
component algorithm,” Journal of ACM, vol. 37, no. 3, pp. 626–642,
1990.

[7] H. Samet, “Connected component labeling using quadtrees,” Journal of
ACM, vol. 28, no. 3, pp. 487–501, 1981.

[8] R. Haralick, “Some neighborhood operations,” in Real Time Parallel
Computing: Image Analysis. New York: Plenum Press, 1981, pp. 11–
35.

[9] R. Lumia, L. G. Shapiro, and O. A. Zuniga, “A new connected
components algorithm for virtual memory computers,” Computer Vision,
Graphics, and Image Processing, vol. 22, no. 2, pp. 287–300, 1983.

[10] J. Schwartz, M. Sharjr, and A. Siegel, “An efficient algorithm for finding
connected components in a binary image,” Robotics Research Technical
Report 38. New York Univ., Tech. Rep., 1985.

[11] H. Samet and M. Tamminen, “An improved approach to connected com-
ponent labeling of images,” in International Conference on Computer
Vision and Pattern Recognition, 1986, pp. 312–318.

[12] M. B. Dillencourt, H. Samet, and M. Tamminen, “A general approach
to connected-component labeling for arbitrary image representations,”
Journal of ACM, vol. 39, no. 2, pp. 253–280, 1992.

[13] L. Di Stefano and A. Bulgarelli, “A simple and efficient connected
components labeling algorithm,” in International Conference on Image
Analysis and Processing, 1999, pp. 322–327.

[14] K. Suzuki, I. Horiba, and N. Sugie, “Linear-time connected-component
labeling based on sequential local operations,” Computer Vision and
Image Understanding, vol. 89, pp. 1–23, 2003.

[15] K. Wu, E. Otoo, and A. Shoshani, “Optimizing connected component
labeling algorithms,” in SPIE Conference on Medical Imaging, vol. 5747,
2005, pp. 1965–1976.

[16] C. Fiorio and J. Gustedt, “Two linear time union-find strategies for image
processing,” Theoretical Computer Science, vol. 154, pp. 165–181, 1996.

[17] L. He, Y. Chao, and K. Suzuki, “A linear-time two-scan labeling
algorithm,” in International Conference on Image Processing, vol. 5,
2007, pp. 241–244.

[18] ——, “A run-based two-scan labeling algorithm,” IEEE Transactions on
Image Processing, vol. 17, no. 5, pp. 749–756, 2008.

[19] L. He, Y. Chao, K. Suzuki, and K. Wu, “Fast connected-component
labeling,” Pattern Recognition, vol. 42, no. 9, pp. 1977–1987, Sep. 2008.

[20] J. K. Clemens, “Optical character recognition for reading machine
applications,” Ph.D. dissertation, Massachusetts Institute of Technology,
Sep. 1965.

[21] T. H. Morrin, “Chain-link compression of arbitrary black-white images,”
Computer Graphics and Image Processing, vol. 5, no. 2, pp. 172–189,
1976.

[22] R. L. T. Cederberg, “Chain-link coding and segmentation for raster scan
devices,” Computer Graphics and Image Processing, vol. 10, no. 3, pp.
224–234, 1979.

[23] B. Kruse, “A fast algorithm for segmentation of connected components
in binary images,” in Proceedings of First Scandinavian Conference on
Image Analysis, Lund, Sweden, Jan. 1980.

[24] P.-E. Danielsson, “An improvement of kruse’s segmentation algorithm,”
Computer Graphics and Image Processing, vol. 17, no. 4, pp. 394–396,
1981.

[25] B. Kruse, “A fast stack-based algorithm for region extraction in binary
and nonbinary images,” in Signal Processing; Theories and Applications,
M. Kunt and F. de Coulon, Eds. Amsterdam: North-Holland Publishing
Co., Jan. 1980, pp. 169–173, proceedings of EUSIPCO Conference,
August, 1980.

[26] P.-E. Danielsson, “An improved segmentation and coding algorithm for
binary and nonbinary images,” IBM Journal of Research and Develop-
ment, vol. 26, no. 6, pp. 698–707, 1982.

[27] F. Chang and C. Chen, “A component-labeling algorithm using contour
tracing technique,” in International Conference on Document Analysis
and Recognition, 2003, pp. 741–745.

[28] L. J. Schutte, “Survey of decision tables as a problem statement
technique,” Computer Science Department, Purdue University, CSD-
TR 80, 1973.

[29] L. T. Reinwald and R. M. Soland, “Conversion of limited-entry decision
tables to optimal computer programs i: Minimum average processing
time,” Journal of ACM, vol. 13, no. 3, pp. 339–358, 1966.

[30] H. Schumacher and K. C. Sevcik, “The synthetic approach to decision
table conversion,” Communications of the ACM, vol. 19, no. 6, pp. 343–
351, 1976.

[31] C. Grana, D. Borghesani, and R. Cucchiara, “Fast block based con-
nected components labeling,” in Proceedings of the IEEE International
Conference on Image Processing, Cairo, Egypt, Nov. 2009.



14

X PX QX RX SX PQ QR SP SQ no
 a

ct
io

n

ne
w

 la
be

l

X=
P

X=
Q

X=
R

X=
S

X=
P+

Q

X=
P+

R

X=
P+

S

X=
Q

+R

X=
Q

+S

X=
R

+S

X=
P+

Q
+R

X=
P+

Q
+S

X=
P+

R
+S

X=
Q

+R
+S

X PX QX RX SX PQ QR SP SQ no
 a

ct
io

n

ne
w

 la
be

l

X=
P

X=
Q

X=
R

X=
S

X=
P+

Q

X=
P+

R

X=
P+

S

X=
Q

+R

X=
Q

+S

X=
R

+S

X=
P+

Q
+R

X=
P+

Q
+S

X=
P+

R
+S

X=
Q

+R
+S

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 0 0 0 0 - - - - 1
1 0 0 0 0 - - - - 1
1 0 0 0 1 0 0 0 0 1 1 0 1 1 1 0 0 0 0 1
1 0 0 0 1 0 0 0 1 1 1 1 0 1 1 1 0 0 0 1 1 1
1 0 0 0 1 0 0 1 0 1 1 1 0 1 1 1 0 0 1 0 1 1
1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1
1 0 0 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 0 1 1
1 0 0 0 1 0 1 0 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1
1 0 0 0 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1
1 0 0 0 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1
1 0 0 0 1 1 0 0 0 1 1 0 1 1 1 1 0 0 0 1 1
1 0 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1
1 0 0 0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1
1 0 0 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1
1 0 0 0 1 1 1 0 0 1 1 0 1 1 1 1 1 0 0 1 1 1
1 0 0 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1
1 0 0 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1
1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1
1 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 1 1
1 0 0 1 0 0 1 0 0 1 1 1 1 0 0 0 0 1 0 0 1
1 0 0 1 0 0 1 1 0 1 1 1 1 0 0 0 0 1 1 0 1 1
1 0 0 1 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 1 1
1 0 0 1 0 1 0 1 0 1 1 1 0 0 0 1 0 1 0 1 1 1
1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1
1 0 0 1 0 1 1 1 0 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 1
1 0 0 1 1 0 0 0 0 1 1 1 0 0 1 0 0 0 0 1
1 0 0 1 1 0 0 1 0 1 1 1 1 0 0 1 0 0 1 0 1 1
1 0 0 1 1 0 1 0 0 1 1 1 1 0 0 1 0 1 0 0 1
1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 0 0 1 0 1 1 0 1 1
1 0 0 1 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1
1 0 0 1 1 1 0 1 0 1 1 1 1 1 0 0 1 1 0 1 0 1 1 1
1 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 0 0 1 1 1
1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1
1 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 1
1 0 1 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1
1 0 1 0 0 0 0 1 0 1 1 1 0 1 0 0 1 0 0 1 1
1 0 1 0 0 0 0 1 1 1 1 1 1 1 0 1 0 0 1 1 0 1 1 1 1
1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 0 1 0 0 0 1 1
1 0 1 0 0 0 1 0 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1
1 0 1 0 0 0 1 1 0 1 1 1 1 0 1 0 1 1 0 0 1 1 1
1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1
1 0 1 0 0 1 0 0 0 1 1 1 1 0 1 1 0 0 0 0 1
1 0 1 0 0 1 0 0 1 1 1 1 1 1 0 1 1 0 0 1 0 1 1
1 0 1 0 0 1 0 1 0 1 1 1 1 1 0 1 1 0 1 0 0 1 1
1 0 1 0 0 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 1
1 0 1 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 0 0 0 1 1
1 0 1 0 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1
1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1
1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1
1 0 1 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1
1 0 1 0 1 0 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1 1
1 0 1 0 1 0 0 1 0 1 1 1 1 1 0 0 0 1 0 0 1 1
1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1
1 0 1 0 1 0 1 0 0 1 1 1 1 1 0 0 1 0 0 0 1 1
1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 1
1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1
1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1
1 0 1 0 1 1 0 0 0 1 1 1 1 1 0 1 0 0 0 0 1
1 0 1 0 1 1 0 0 1 1 1 1 1 1 1 0 1 0 0 1 0 1 1
1 0 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 0 0 1 1
1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 1 0 1 1 1 1
1 0 1 0 1 1 1 0 0 1 1 1 1 1 1 0 1 1 0 0 0 1 1
1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1
1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1
1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1
1 0 1 1 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1
1 0 1 1 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 0 1 1 0 0 0 1 0 1 1 1 1 1 0 0 1 0 0 1 1
1 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1
1 0 1 1 0 0 1 0 0 1 1 1 1 1 1 0 1 0 0 0 1 1
1 0 1 1 0 0 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1
1 0 1 1 0 0 1 1 0 1 1 1 1 1 1 0 1 1 0 0 1 1 1
1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1
1 0 1 1 0 1 0 0 0 1 1 1 1 1 1 1 0 1 0 0 1 1
1 0 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1
1 0 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1
1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1
1 0 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1
1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1
1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

assign mergeassign merge

Fig. 17. The complete Block Based Decision Table (BBDT) obtained using block connectivities. It is possible to note that we produced an OR-decision
table which cannot be optimized by brute force.


