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a b s t r a c t

Video surveillance is becoming the technology of choice for monitoring crowded areas for security
threats. While video provides ample information for human inspectors, there is a great need for robust
automated techniques that can efficiently detect anomalous behavior in streaming video from single
or multiple cameras. In this work we synergistically combine two state-of-the-art methodologies. The
first is the ability to track and label single person trajectories in a crowded area using multiple video cam-
eras, and the second is a new class of novelty detection algorithms based on spectral analysis of graphs.
By representing the trajectories as sequences of transitions between nodes in a graph, shared individual
trajectories capture only a small subspace of the possible trajectories on the graph. This subspace is char-
acterized by large connected components of the graph, which are spanned by the eigenvectors with the
low eigenvalues of the graph Laplacian matrix. Using this technique, we develop robust invariant distance
measures for detecting anomalous trajectories, and demonstrate their application on real video data.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Modern society must face threats from many different sources:
natural disasters, wars, lack of natural resources (such as water),
micro- and macro-criminality, etc. Terrorism is one of today’s ma-
jor security threats. Terrorist attacks are very difficult to predict
and do not follow specific known patterns. There is no universally
recognized technology or procedure to alert people or prevent ter-
rorist attacks. This is particularly true when the terrorist is a single
individual in a crowd, unfortunately a frequent event we try to
address in this paper.

Intelligent video surveillance (IVS) is one of the terrorist pre-
vention technologies which has attracted the most interest, due
to the increasing presence of surveillance cameras and potential
algorithms for analyzing complex scenes that provide visual cues
for high-level automatic reasoning. Generally speaking, video cam-
eras provide the richest and most promising source of information
about potential terrorist threats. This abundance comes at the cost
of very complex data processing and still unreliable automatic pro-
cedures, which make completely automated video surveillance
impractical. Nevertheless, significant advances in computer vision
and machine learning have been made since the time camera feeds
were simply sent to monitors in a control center and were scruti-
nized by human operators. Today, intelligent video surveillance

can tap increasingly sophisticated algorithms capable of detecting
and tracking moving objects from still cameras in challenging
crowd scenarios [1–4].

Reliable methods for fusing the results obtained from multiple
cameras, either with overlapping fields of view [5–7] or with dis-
joint views [8–10], have been developed. These methods make it
possible to keep a person’s movement under surveillance for long-
er periods of time, and hence to achieve more complete and contin-
uous monitoring.

Among the numerous features that can be extracted from video,
the trajectories of people moving in a scene provide useful and
informative cues for detecting suspicious and anomalous behav-
iors. In fact, there is no simple way to categorize and label people’s
trajectories such that a ‘‘standard’’ supervised machine learning
approach can be utilized. This is mainly because there is no simple
model for what can be identified as anomalous or suspicious
behavior, and no simple measure of similarity for such trajectories.
Conversely, without any a-priori context knowledge, trajectory
patterns can be classified as normal or abnormal only by consider-
ing their statistical occurrence. Moreover, in real-world contexts,
especially in outdoor scenarios with high scene variability, people’s
trajectories can be very different and therefore very difficult to
model.

In this paper we adopt an approach that has proved successful
in other unsupervised tasks with similar difficulties. The idea is
to represent people’s trajectories in space, as detected by video
tracking, as sequences of transitions between nodes on a graph.
The nodes are determined by vector quantization of short motion
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segments in the video field of view. Using this discrete
representation it is possible to statistically characterize ‘‘normal
trajectories’’ by the algebraic properties of the graph generated
by accumulated trajectories. It is shown that ‘‘normal’’ trajectories,
when long enough, capture only a tiny subspace of all the possible
sequences of node transitions. This small subspace can be deter-
mined by the dominant connected components of the graph, or
equivalently, by eigenvectors with small eigenvalues of the graph
Laplacian matrix [11–13].

The paper is organized as follows. We first describe the back-
ground and related work. Then we detail the three steps of our
combined approach: (i) from video to discrete time series (ii) from
time series to graph (iii) the anomaly detection method on graphs
using the Laplacian filtering. We then describe our experimental
results and application of the algorithm to real data, following a
conclusion.

2. Related works

The problem of anomaly detection in video-surveillance scenar-
ios has been addressed by several researchers. Partial surveys on
the topic by Buxton [14] and Hu et al. [1] give an overview of the
vast range of techniques and approaches that can be applied to
the problem. In the literature, the problem of anomaly detection
has been addressed in two main ways: the first considers an anom-
aly as a deviation from a pre-learned set of normal events [15–17];
whereas the second approach directly models a set of desired
activities for querying and mining [18,19]. Although the latter ap-
proach requires the formalization of the set of anomalies that may
occur in the scene, the former exploits typical machine learning
techniques for inferring infrequent and anomalous events.

Another important factor that influences the problem of detect-
ing anomalies in video surveillance is the choice of features that
correctly reveal infrequent events in a scene. Many methods adopt
a holistic approach that considers the scene as a whole rather than
specific features of it. In [20] an anomaly is detected on a compact
representation of elementary video events relative to the motion
information of the foreground objects by using a generative model
of behaviors trained on a small collection of examples, with an on-
line likelihood ratio test to detect anomalies in new sequences.
Basharat et al. [21] and Saleemi et al. [22] successfully analyzed
the motion patterns of objects in the scene using non-parametric
and parametric probability distribution functions (pdfs), that sta-
tistically capture the common motion models and track features,
respectively. Anomalies are detected either by adopting first-order
dynamic models, Monte Carlo Markov Chains, or by clustering sim-
ilar distributions using the Expectation Maximization framework.
The holistic approaches share the invaluable advantage of detect-
ing deviations from usual and frequent events without any prior
knowledge, but rely heavily on the discriminate power of the se-
lected features that typically catch only low-level changes in the
recorded scene (i.e., pixel-level illumination changes, objects
appearing and disappearing, etc.).

In terms of features, people’s trajectories constitute a better
choice for representing behaviors in a scene since they can be ro-
bustly extracted from complex scenarios by most modern video-
surveillance systems [23]. Searching for anomalies in people’s tra-
jectories involves defining a measure for comparing trajectories
and the ability to cluster common behaviors. Anomalies are spot-
ted by observing the clusters’ cardinality and directly learned from
unlabeled data [24]. For example, in [25] a modified version of the
edit distance was adopted as the similarity measure and anomalies
were detected using spectral clustering on distance matrices.
Panozzo and Mecocci in [26] modified the iterative Altruistic Vector
Quantization algorithm to robustly cluster trajectories by pure

spatial observations and obtained representative prototypes. Their
anomaly detection was based on fitting a spatial Gaussian on each
prototype and statistically checking the fit of new trajectory sam-
ples. In [27] Junejo et al. applied graph cuts to cluster trajectories
using the Hausdorff distance measure. In [7] a system for learning
statistical motion patterns was presented. Trajectory clustering
was performed using a two-stage fuzzy k-means. First, trajectories
were clustered in the spatial domain, then each cluster is sub-clus-
tered in the temporal domain. New trajectories were checked
against cluster centers using Bayes rule and anomaly detection
was performed by thresholding the resulting probability. Similarly,
Sillito and Fisher [28] adopted a semi-supervised scheme to
correctly label normal trajectories where the human operator plays
a key role in defining the concept of normal paths; conversely,
Piciarelli et al. [29] trained an SVM using a corpus of normal trajec-
tories exploiting the SVM novelty detection capabilities to detect
anomalous behaviors online.

All the above works compare each trajectory to the previous
ones. We adopted a different approach, looking at the scene as a
whole, i.e. accumulating the trajectories to create perception of
the normal behavior in the scene. For this purpose, we describe
the scene as a weighted graph. Note that in our setting we can han-
dle many trajectories at a time. Moreover, the need of the trajecto-
ries to be complete is removed, allowing more continuous
detection.

Detecting anomalies in graphs (networks) in an efficient and
precise way is still a challenge. The works of Lakhina et al.
[30,31] try to detect anomalies by the fact that normal graph activ-
ity resides in low dimension space. PCA is used in order to define
the abnormal space, then each new activity is projected into this
space. A projection with high volume can be considered anoma-
lous, i.e. it does not reside in the restrict normal space. This method
demands heavy computational load, and a possible solution can be
found in [32]. Ide and Kashima [33] try to detect anomalies in com-
puter network by accumulating the first eigenvector for each sam-
ple of network activity. They generate a matrix from these
eigenvector then the left eigenvector of this matrix is taken and
the new sample is projected to it. The sample is considered anom-
alous if the value resulting from the above process is higher then
some threshold, chosen in a sophisticated way.

Here we adopt an unsupervised method for anomaly detection
that combines several known and novel techniques. First, we quan-
tize the motion using a partition of the scene into statistical Voro-
noi cells, and then quantify the trajectories as weighted undirected
graph by representing each node as n adjacent cells boundary-
crossings. To the best of our knowledge this is a novel representa-
tion of trajectories for such applications. The idea underpinning
our anomaly detection approach is to analyze the spectral fluctua-
tion of the graph built on cell transitions spanned by people trajec-
tories. Since the first pioneering works [34,35] presented the
chance of analyzing graph topology by studying the underlying
embedding eigenspace, several applications in computer vision
and pattern recognition have been proposed to tackle, by Laplacian
analysis, heterogeneous problems ranging from image segmenta-
tion [36], to people tracking [37], to image enhancing [38] and re-
trieval [39].

Several measures exist for comparing graphs of the same size
(exact matching) [11], while inexact graph matching is still an
intensively studied problem, adopted to cluster similar images
[40], 3D meshes [41] and objects shapes [42]. A technique for com-
paring structural similarities in graphs with the aim of clustering is
presented in [43]. It relies on the embedding of the graph topology
in a vector-form pattern space that is robust to the permutations of
the graph nodes and preserves more informative content than the
Laplacian eigenvalues feature vector. The pattern vector embed-
ding is achieved by constructing symmetric polynomials using
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the graph Laplacian values. Alternative graph representations, in-
stead of operating directly on the Laplacian matrix, have been used
for image clustering. For example, the heat kernel trace on the
Laplacian matrix [44] has been proposed as a graph-node permuta-
tion-invariant measure for effective inexact graph comparison and
clustering.

Although many methods exist for deeply analysing graph spec-
tra, in our proposal we then extend the spectral embedding meth-
od used in spectral clustering [45,13], by projecting the graph on
the low-frequency eigenvector of its Laplacian matrix. This is anal-
ogous to lowpass filtering in Fourier representation of signals,
where the Laplacian eigenvectors generalize the standard ortho-
normal Fourier basis to a general graph. The rational for this repre-
sentation is that anomalous trajectories will locally deviate from
the most frequent cell-transitions and introduce a high-frequency
fluctuation in this spectral representation. In the final step we re-
peat the same projection on powers of the Laplacian matrix, to cap-
ture anomalies on larger time scales. This can be performed
efficiently using the graph diffusion kernel [46], or the exponential
of the Laplacian matrix.

The anomaly detection is done using the divergence measure
defined by the canonical angle between the subspaces defined by
the k-low eigenvectors of the test and train Laplacian matrices
[11,33,32,47]. This measure is an invariant measure that is empir-
ically found to be sensitive to the anomalies we seek in this work.

3. From videos to time series

In this section we describe our trajectory tracking and segmen-
tation algorithms, used for the graph embedding and novelty
detection method.

3.1. Single camera processing

The first important processing step in an automatic surveillance
system is the extraction of objects of interest. For our application,
‘‘objects’’ means ‘‘people’’ and ‘‘interest’’ means ‘‘movement’’, since
we aim to model people’s behaviors. In theory, stationary people
can be potential threats to security as well. However, completely
stationary people are more difficult to detect and less likely to be
found in real scenes.

When the cameras are installed in fixed positions the detection
of moving people can be achieved by finding the difference be-
tween the input frame and a model of the static content of the
monitored scene, i.e. the background model. Background modeling
is a complex task in ‘‘real-world’’ applications; many difficulties
are due to environmental and lighting conditions, micro-move-
ment (e.g. moving tree branches), or illumination changes. The
background model must also be constantly updated during the
day because of natural intrinsic changes in the scene itself, such
as clouds covering the sun, rain and other possible natural artifacts.

The motion detection algorithm adopted in this work is specif-
ically designed to ensure a robust and reliable background estima-
tion even in complex outdoor scenarios. It is a modification of the
Statistical And Knowledge-Based Object deTector (SAKBOT) system
[3], that increases robustness in outdoor uncontrolled environ-
ments [23]. The SAKBOT background model is a temporal median
model with a selective knowledge-based update stage. To accom-
modate the bootstrapping issue [48], the initial background model
is initialized by subdividing the input image I into 16 � 16 size
blocks and fast updating them based on single frame differencing:
blocks composed of more than 95% of still pixels are forced into the
background model. After this bootstrapping stage, the background
model is updated using a selective temporal median filter, which

retains, for each pixel, the median value of the last k samples, col-
lected in a circular buffer.

The difference between the current image and the background
model is computed as the maximum of the differences in R, G
and B, and then binarized using two different local and pixel-vary-
ing thresholds: a low threshold Tlow to filter out the noisy pixels ex-
tracted due to small intensity variations and a high threshold Thigh

to identify the pixels where a large intensity variation occurs.
Moreover, these two thresholds are adapted to the current values
in the buffer in order to adapt to illumination changes. More in de-
tails, the thresholds are computed as follows:

Tlowði; jÞ ¼ k bkþ1
2 þl � bkþ1

2 �l

� �
ð3:1Þ

Thighði; jÞ ¼ k bkþ1
2 þh � bkþ1

2 �h

� �
ð3:2Þ

where bp(i, j) is the value at position p inside the ordered circular
buffer b of pixel (i, j) which contains the last n values of the consid-
ered pixel and, consequently, bkþ1

2 þ1 the median. k is a fixed multi-

plier, while l and h are fixed scalar values. We experimentally set
k = 7,l = 2 and h = 4, for a buffer of n = 9 values.

The final binarized motion mask Mt is obtained as a composition
of the two binarized motion masks computed respectively using
the low and the high thresholds.

Finally, the list MVOt of moving objects at time t is extracted
from Mt by grouping connected pixels. However, an object-level
validation step is required to remove all the moving objects gener-
ated by small movement in the background, for example by mov-
ing tree branches. This validation takes into account the joint
contribution of the gradient and color coherences of the objects.

The gradient coherence GCt is evaluated over a n � n neighbor-
hood as the block-wise minimum of absolute differences between
the current gradient values Gt and the background gradient values
GBGt in a block. The gradient is computed with respect to both spa-
tial and temporal coordinates of the image It. In the case of station-
ary points, the past image samples It�Dt can be approximated with
the background model BGt and then the gradient module Gt is com-
puted as the square sum of all the components:

@Itði; jÞ
@ðx; tÞ ¼ BGtði� 1; jÞ � Itðiþ 1; jÞ

@Itði; jÞ
@ðy; tÞ ¼ BGtði; j� 1Þ � Itði; jþ 1Þ

Gt ¼ gði; jÞjgði; jÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@Itði; jÞ
@ðx; tÞ

���� ����2

þ @Itði; jÞ
@ðy; tÞ

���� ����2
s8<:

9=;
ð3:3Þ

This joint spatio-temporal gradient module turns out to be quite
robust to small movements in the background, mainly thanks to
the use of a temporal partial derivative. Moreover, the joint spa-
tio-temporal derivative makes the gradient computation more
informative, since it also detects the non-zero gradient module
even in the inner parts of the object and not only on the bound-
aries, as found in typical techniques.

Unfortunately, when the gradient module (either Gt or GBGt) is
close to zero, the data are not reliable. To overcome this problem,
we combine the gradient coherence with the color coherence CCt

computed block-wise as the minimum of the Euclidean norm in
the RGB space between the current image pixel color It(i, j) and
the background model values in the block centered at (i, j). The
overall validation score is the normalized sum of the per-pixel
validation score, obtained by multiplying the two coherence mea-
sures. Objects are validated by thresholding the overall coherence
and pixels belonging to discarded objects are labeled as part of the
background.
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After being identified, moving objects should be tracked over
time. For this purpose we used an appearance-based tracking algo-
rithm called Appearance Driven tracking with Occlusion Classification
(Ad Hoc) [49]. The tracking problem is formulated as a probabilistic
Bayesian model, taking into account both motion and appearance.
The probabilistic estimation is redefined at each frame and opti-
mized as a MAP (Maximum A Posteriori) problem so that a single
solution for each frame is obtained deterministically. We do not
track each object separately but rather the whole object set is con-
sidered in the tracking in a two-step process: the first top-down
step, provides an estimation of the best positions of all the objects,
predicts their positions and optimizes them in a MAP algorithm
according to the pixel’s appearance and a specifically defined prob-
ability of non-occlusion. The second step is discriminative and bot-
tom-up, and associates each observation point to the most
probable object. Thus, the appearance model of each object is
selectively updated at the pixel level in the visible part, thus ensur-
ing high reactivity in shape changes. Further details can be found in
[49].

3.2. Multiple camera processing

In large outdoor environments, multi-camera systems are re-
quired. In fact, distributed video-surveillance systems may exploit
multiple video streams to enhance observation ability. Hence, the
problem of tracking is extended from single to multiple cameras:
people’s shapes and status must be consistent not only in a single
view, but also in space (i.e., observed by multiple views). This prob-
lem is known as consistent labeling, since identification labels must
be consistent in time and space.

If the cameras fields of view (FoVs) overlap, consistent labeling
can exploit geometry-based computer vision. This can be done
with precise system calibration and 3D reconstruction can be used
to resolve any ambiguity. However, this is not often feasible, in
particular if the cameras are pre-installed and intrinsic and extrin-
sic parameters are not available. Thus, partial calibration or self-
calibration methods can be adopted to extract only some of the
geometrical constraints, e.g. to compute the ground-plane homog-
raphy. We adopted a geometric approach called HECOL (Homogra-
phy and Epipolar-based COnsistent Labeling) [6] that exploits
cameras FoV relations and constraints to impose identity
consistency.

Specifically, when cameras partially overlap, the shared portion
of the scene is analyzed and people’s identities are matched geo-
metrically. First of all, an initial unsupervised and automatic train-
ing phase is employed to compute the overlapping regions among
FoVs, ground-plane homographies and the epipole location for
pairwise overlapping cameras. In this phase a single person moves
into the scene and pairs of coordinates for the lower support points
of the person (which lie on the ground plane z = 0) on two

overlapped cameras are collected. Using SVD or LSQ methods the
homography matrix between the two cameras ground planes can
be easily estimated.

The consistent labeling problem is then solved online whenever
a new object s appears in the field of view of a given camera C1. The
multi-camera system must check whether s corresponds to a com-
pletely new object or to one which is already present in the FoV of
other cameras. Thus, the lp of each of the K objects in the over-
lapped camera C2 is warped to the image plane of C1 through the
previously computed holography. The likelihood is then computed
by testing the fit of each hypothesis against current evidence. The
main goal is to distinguish between single hypothesis, group
hypotheses and possible segmentation errors by exploiting only
geometrical properties in order to avoid uncertainties due to color
variation and adopting the vertical axis of the object as an invariant
feature.

In addition, the axis of the object s can be warped correctly only
with the homography matrix and the knowledge of epipolar con-
straints among cameras. To obtain the correct axis inclination the
vertical vanishing point (computed by a robust technique as de-
scribed in [50]) is then used as shown in Fig. 1. The lower support
point lp of s is projected on camera C2 by using the homography
matrix. The corresponding point on the image plane of camera C2

is denoted as a1 = Hlp, where H is the homography matrix from
C1 to C2. The warped axis will lie on a straight line passing through
vp2 and a1 (Fig. 1d). The ending point of the warped axis is com-
puted by using the upper support point up, which is the middle
point of the upper side of the objects bounding box. Since this
point does not lie on the ground plane, its projection on the image
of camera C2 does not correspond to the actual upper support
point; however, the projected point lies on the epipolar line. Con-
sequently, the axis’ ending point a2 is obtained as the intersection
between the epipolar line he2,Hupi and line hvp2,Hlpi passing
through the axis.

Based on geometrical constraints, the warped axis ha1,a2i of s in
the image plane of C2 is univocally identified but its computation is
not error free. In order to improve robustness to computation er-
rors, we also account for the dual process that can be performed
for each of the K potential matching objects: the axis of the object
in C2 is warped on the segment ha1,a2i on camera C1.

The measure of axis correspondence is not merely the distance
between axes ha1,a2i and hlp,upi; it is defined as the number of
matching pixels between the warped axis and the foreground blob
of the target object. This makes it easier to define a normalized va-
lue to quantify the matching.

In the end, the likelihood is defined as the maximum value be-
tween the forward and backward contributions, where the forward
contribution refers to the case in which the measure is computed
from the camera where the new object appears (camera C1) to
the image plane of the hypothesis (camera C2), whereas the

Fig. 1. Example of exploiting vanishing point and epipolar geometry to warp the axis of the object s to the image plane of camera C1.
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backward contribution is computed similarly from the hypotheses
space to the observed object [6]. The use of the maximum value en-
sures that the contribution where the extraction of support points
is generally more accurate and suitable for the matching will be
used. The effectiveness of the double backward/forward contribu-
tion is evident in the full characterization of groups of people. The
forward contribution helps solve situations when a group of ob-
jects is already inside the scene while the group’s components ap-
pear one at a time in another camera. By contrast the backward
component is useful when two people appear in a new camera de-
tected as a single blob. Group disambiguation can be solved by
exploiting the fact that in the other camera the two objects are de-
tected as separated. The backward contribution is also useful to
solve the case of segmentation errors in which a person has been
erroneously extracted by the object detection system as two sepa-
rate objects, but a full view of the person exists from the past in an
overlapped camera.

The algorithms described in this section have the scope to keep
a person tracked when he/she moves in a wide and complex area.
In other words, the video containing the moving people can be con-
verted in a different time series for each moving person in it: the
time series contains the trajectory Tj for the person j, composed
by a sequence of (x,y) coordinates, rectified on the ground plane.

4. From time series to graphs

A possible indicator of potential threats is the fact that a person
moves in an anomalous way, i.e. following an abnormal path: for in-
stance, if someone moves in the opposite direction of a crowd, or if
he/she follows a trajectory never (or rarely) seen before, etc. On the
other hand, a system that raises an alarm for every trajectory which

has not seen before will raise many false alarms. Hence, the system
needs to recognize normal trajectories even though it has not
‘‘seen’’ them before. For this purpose, the trajectories obtained
through the algorithms described in Section 3 need to be analyzed
to detect anomalies. This problem is addressed here by embedding
the training trajectories in a graph and then measuring the effect of
a new trajectory relative to the reference graph. To achieve this, the
first step is to transform the time series (trajectories) into a
weighted graph, where a node v represents movement from one
location in the scene to another, while the weight of edge ei,j is
the probability to see the i movement followed by the j movement.

The direct use of the (x,y) samples is unfeasible since it will re-
sult in a very high number of nodes (as extreme case, square of the
number of pixels), which severely compromises the use of graph-
based approaches due to computational cost, as well as the robust-
ness of the representation. Moreover, the (x,y) data are often af-
fected by noise and tracking errors, and thus need to be filtered
before use. The simplest solution to both problems is the quantiza-
tion of image (x,y) plane, which in this context translates into
dividing the scene into a fixed number of cells and assigning each
data point to its containing cell. The naive scheme is to divide the
scene using a fixed-size grid. Unfortunately, the grid size is a cru-
cial parameter in this approach. Let N �M be the size of the image
(bird-eye view of the complete scene taken from multiple cam-
eras), and Nr and Nc be the number of rows and columns of the grid,
respectively. The direct use of the coordinates would result in
(N �M)2 nodes, reduced to (Nr � Nc)2 using a uniform grid: if Nr

and Nc are too high (say Nr = 100 and Nc = 100 for a
N �M = 1000 � 1000 image) the approximation is good but the
computational load can still be too high (100,000,000 nodes in
the example); if Nr and Nc are reduced (e.g., (10 � 10)2 = 10,000

Fig. 2. Irregular partitioning of the image area through Voronoi diagrams: (a) Reports the first regular division of the image (50 � 50 = 2500 cells in this example); (b) shows
the top view of the 2D histogram, while (c) shows a side view; and (d) shows the resulting Voronoi diagram with 50 cells.
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nodes) the complexity becomes more acceptable (but still not
practical) at the price of the risk of having an overly coarse
quantization of the data. Another disadvantage of a uniform grid
is the uneven statistics of the cells occupation in natural scenes,
yielding suboptimal statistical quantization of the trajectories.

These problems are tackled at two levels. First, we do not use the
fixed-size regular-geometry grid scheme but rather a density-sen-
sitive variable-geometry one. Second, graph nodes are assigned
only to observed transitions. By not forcing any specific geometry
of the cells (as in the case of a regular grid), the task of finding an
adequate partition to cells is reduced to finding appropriate cen-
ter-points. Having established the centers, the cells’ boundaries
are determined by the locus of points that are at the same distance
from two centers, hence creating a Voronoi tessellation. In order to
select the centers, certain properties can be considered: first, an
area that is rarely traversed needs only a rough description; con-
versely, busy areas require a high resolution partitioning in order
to distinguish between normal and abnormal walks. A natural solu-
tion is to use as centers points that are randomly sampled on the
training trajectories, taking into account small sample size effects.
In that way we can use fewer cells (i.e., nodes) but still maintain
high resolution in the ‘‘most populated’’ areas.

The procedure is summarized in Fig. 2. Given a training set com-
posed of normal trajectories, the image is first divided in Nr � Nc

rectangular cells of fixed size (Fig. 2a). For this preliminary step,
Nr and Nc are less critical parameters and can be high (we used
250 � 500 in our experiments). Using this division, a 2D histogram
H can be built (Fig. 2b and c), where Hði; jÞ represents the number
of trajectory points falling in the cell at row i and column j. It is
worth noting that during this first step no tracking information is
required and the trajectories are treated as a set of points instead
of a sequence of points.

The 2D histogram represents a 2D distribution of the samples in
the scene, with peaks (Fig. 2c) in the major areas (cells) of activity
in the scene. To obtain the best coverage (related to the training
data) and the most suitable partition of the scene with the fewest
cells, they need to be distributed according to the discrete distribu-
tion described by H. Thus, given Ncenter as the number of cells/
nodes used, we draw Ncenter samples from the distribution approx-
imated by H, which increases the likelihood of sampling from
peaks of H, avoiding sampling from areas where no points are
present in the training set. These Ncenter samples represent the
seeds of a Voronoi tessellation of the scene (Fig. 2d). The adjacency
map and the transition matrix are then computed on these cells,
making the graph treatable in computational terms.

Having established the centers, each point is replaced by the
center closest to it, so that the trajectories are transformed into a
sequence of centers. A node is assigned to each observed transition
from cell a to cell b. Let node i represent the transition from node a
to b, and in the same manner j represents the transition from cell b
to cell c. Hence, the edge ei,j will represent the occurrence of mov-
ing from cell a to cell b and then to cell c, while the weight of edge
ei,j will be the probability of such a movement. Note that we only
assign nodes to an observed transition, in order to minimize the
graph dimensions (see above).

When transforming trajectories into a graph, the global descrip-
tion of the trajectory is lost. In order to overcome to this deficiency,
we first create a second-order graph, thus creating nodes not for
each cell but for each movement from cell to cell. Moreover, we
sample the trajectory at several time scale to better catch the
anomaly. In our tests each trajectory is first treated in every sam-
ple, then every 10 samples, every 20 samples, and so on until
reaching a third of the trajectory length. This multi-level sampling
allows a good generalization, not sensitive to normal changes, car-
rying the advantage of having a broad point of view on trajectories
achieved by looking at different time scales.

This procedure transforms a collection of trajectories into a
graph. When a new trajectory is encountered, the cell centers are
determined according to the above scheme, but using the new tra-
jectory together with all the normal ones. To guarantee that the
new trajectory is represented in the graph, a fixed number of cen-
ters (in our trials 3) is sampled from the new trajectory, whereas
the remainder (in our trials 47) are sampled from the normal tra-
jectories. By using these centers a graph is constructed using the
new trajectory, while another is built using only the normal trajec-
tories. Once these two graphs have been constructed, anomalies
are detected by searching for substantial differences between
them, as described in the following section.

5. From graphs to anomalies

Anomalies detection entails two competing requirements: the
first is to be able to detect anomalous instances and the second
is to ignore normal instances. In contrast to most supervised learn-
ing problems, where different classes are explicitly considered, in
this case we are only able to characterize one class (the normal
class), and then define the abnormal class by exclusion. Therefore,
a normal instance is defined as one that is similar to the previous
normal instances. By defining the problem in this way, the crucial
issue is to find a proper similarity function without assuming too
much about the specific nature of the anomalies.

Fig. 3. (a) Map of the scenario used for testing. (b) Snapshots from the camera used
for tracking and logging people trajectories and their projection on the ground
plane map.
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Our specific approach is motivated by the algebraic properties
of similarity matrices proved highly successful in spectral cluster-
ing [13]. The procedure is explicitly described below.

5.1. The divergence measures

Let us first introduce some notations. Let W 2 Rþ
N�N be a sym-

metric matrix that represents the edge weight so Wi,j is the weight
of edge ei,j. Let A 2 RN�N be a matrix, and denote the matrix eigen-
values as {k1, . . . ,kN}, ordered in increasing order. The correspond-
ing eigenvector will be denoted as {/1, . . . ,/N}. We will represent
the graphs as normalized Laplacian L ¼ I � D�

1
2WD�

1
2, where D is a

diagonal matrix such that di;i ¼
P

j¼1;...;NWi;j and I is identity matrix.
This can be justified by the result [11] that the eigenvectors of the
Laplacian converge to the Laplace–Beltrami eigenfunction of the
manifold. More intuitively, note that the Laplacian enforces the dif-
fusion roll, i.e. the amount of input entering is equal to the amount
leaving in all vertices.

Let us now define the variables k and d.

Definition 1. Let k1, . . . ,kN be the eigenvalues of L, then k and d are
defined as:

d ¼max
i
ðkiþ1 � kiÞ ð5:1Þ

k ¼ arg max
i
ðkiþ1 � kiÞ � ð5:2Þ

i.e., k was defined as to maximize the spectral gap d.

From the Laplacian, we consider only the first k eigenvectors
U[1, . . . , k] corresponding to the smallest k eigenvalues. By doing so
the non-significant (high-frequency) effects are removed and only
the fundamental structure of the graphs is compared.

Given two graphs G and eG the eigenvectors of one graph are
projected on the other by means of the definition of the matrix M.

Definition 2. Let G and eG be two graphs. Let U and eU be their
corresponding eigenvector matrices, and k and ~k be computed as
reported in Definition 1. Then the matrix M is defined as:

M ¼
UT
½1���k�

eU½1���~k� k P ~keUT
½1���~k�U½1���k� else

8<: � ð5:3Þ

The singular values of Matrix M can be considered as the sin2 of an-
gles between the two subspaces. These angles are called the canon-
ical angels and are the standard invariant (under coordinate

Fig. 4. (a) Plot of the temporal graph distance used to detect anomalies. The square indicates the time the system raised an alarm. The blue asterisk are the true positive
ground truthed alarms while the black one represents a true negative. The green circles refer to the anomalous situations of Fig. 5. (b) Plot of the number of standard
divergence error from the learned mean � jD�E½D�jffiffiffiffiffiffiffiffiffi

Var½D�
p .
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changes) way to measure scale invariant distances between linear
subspaces. We suggest two ways to apply the singular values in
our context. The first is summing their squared values (the trace
measure below) and the second taking the product of their squared
value (the determinant measure below). Both are invariant mea-
sures that reflect the geometrical overlap of the two subspaces.

Definition 3. Given two graphs G and eG and the corresponding
matrix M as defined in Definition 2, the determinant divergence is
defined as:

DðG; eGÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðMT MÞ

q
� ð5:4Þ

This measure incorporates a geometric intuition. Namely, the eigen-
values of M may be regarded as cosh, where h denotes the angles
between the subspaces. The natural way to proceed is to find the
volume of the parallelotope created by the cosine of the angles.
Finding the volume of a k-dimensional parallelotope is achieved
by calculating the Gramian matrix of M, i.e. the inner product

between all the vectors of a matrix. The volume is calculated by tak-
ing the square-root of the Gramian matrix’s determinant, which re-
sults in

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðMT MÞ

q
.

Definition 4. Given two graphs G and eG, the corresponding matrix
M as defined in Definition 2, and defining k̂ ¼minðk; ~kÞ, the trace
divergence is defined as:

DðG; eGÞ ¼ k̂� TraceðMT MÞ � ð5:5Þ

To understand this measure, it is worth recalling the well-known

Frobenius norm of a matrix A : kAkfro ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TraceðAT AÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1k

2
i

q
,

where ki is the ith singular value. Since the singular value of M rep-
resents the angles between the subspaces, it is evident that in the
case of equality between the graphs, all angles will be zero, which
means that the cosines will be 1 and their sum will equal k, i.e.
the minimum between the two dimensions of the subspace.

With respect to the existing approaches, our method assumes
the mapping between graph nodes to be known and exploits this

Fig. 5. Two different examples of typical anomalous situations that may occur in urban scenarios. In (a) a theft is stealing a bag and running away. In (b) a person is moving
suspiciously around people walking.
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information to employ a distance measure more suitable to the
problem. This measure eliminates the existing drawbacks of other
methods (e.g., graph edit distance), such as their sensitivity to scal-
ing on the edges’ values and that they cannot distinguish between
probable and improbable changes. Regarding the first issue, our
approach results to be invariant to scaling, since it ignores the ex-
act eigenvalues of the adjacency matrix, while focusing on the an-
gles between subspaces induced by the Laplacian eigenvectors.

Speaking of the second issue, since we assume that pedestrians
follow the same paths, our graph will create several clusters, one
for each of such path. On the one hand, given our case scenario,
it is highly likely that people do not follow exactly (step-by-step)
the same path, also given the uncertainty in the extraction of the
trajectories. This type of deviation from normal paths must be
properly addressed and ignored. On the other hand, if a pedestrian
crosses between two normal paths (generating a never-seen-be-
fore path), our system must detect this as an anomalous path.
Our method will deal correctly with both cases: in the first case,
there will be no change in the path cluster hence no change in
the first eigenvectors; instead, the second case will cause the con-
nection between two path clusters (i.e. the change of the first
eigenvectors).

5.2. The algorithm

This section summarizes the algorithm used to detect anoma-
lies in people trajectories.

Detecting(a, learn){
counter = 0;

T = getTrajectory();

Tr_normal{counter} = T;
while(1){
alarm = 0;

T = getTrajectory();

[E1,E2] = fromTrajectoryToGraph(Tr_normal,T);
dis = getDistance(E1,E2);

if(dis-m > a�(sqrt(v)) && counter > learn){
alarm = abnormal

}else{
counter++;

Tr_normalcounter = T
d = dis � m;

m = m + d/counter;

(continued on next page)

Fig. 6. Results on Edinburgh Informatics Forum Pedestrian Database – dataset 26th August.
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v = (v⁄(counter� 1) + d � (dis � m))/counter;

}
if(alarm == abnormal){
raise an alarm;

}
}

}

This algorithm is constructed in three main steps. The first step
consists of processing the video data and transforming them into a
time series: this step is performed by the function getTrajecto-

ry(), which corresponds to the algorithms described in Section 3.
This function can either return one complete trajectory, or a set of
trajectories (not necessarily complete). The second step consists of
the transformation of the time-series data into a graph represen-
tation (method fromTrajectoryToGraph(Tr_normal,T) de-
scribed in Section 4): in particular, one graph represents only the
normal trajectories (the reference graph), while the other contains
the new (test) trajectory (or trajectories). Finally, the third step
implements one of the divergence functions which we have
defined in Section 5.1.

The algorithm also has two parameters, a and learn. The latter
defines the period of time necessary for the system to ‘‘learn nor-
mality’’, while the former controls the tradeoff between sensitivity
and specificity, i.e. if the distance between the two graphs is larger
than the mean distance by a times the standard error (which
means that we assume a Gaussian distribution) we can decide
whether this sample is anomalous or not.

When a sample is found normal, we keep updated the percep-
tion of normal behavior by consequently updating the mean (m)
and variance (v) of the distance measure.

As mention above our distance measures are motivated by the
observation that trajectories (as other data) can be divided into
several groups. In the considered scenario we found this assump-
tion valid observing that anomalous trajectories created new
groups. This can be intuitively seen when looking at the scale on
y-axis of Fig. 4.

The choice of the trace distance measure instead of the determi-
nant one can be motivated recalling the geometric meaning of the
measure. In fact, the intuition for selecting the determinant mea-
sure, as mentioned above, is to evaluate the volume of the parallel-
otope. When a new cluster is formed, a new eigenvector is added to
the selected eigenvectors (thus, k will grow). As a consequence,

Fig. 7. Results on Edinburgh Informatics Forum Pedestrian Database – dataset 14th July P1.
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since the projection of this new eigenvector on the former set will
be zero, thus the volume of the parallelotope will be zero too. If
more than one cluster is formed, the volume will still be zero, re-
sulted in the inability to discern between the number of new clus-
ters. Consequently, the trace distance is preferred given its
capability to discern between the number of new clusters.

Moreover in this scenario a simpler distance measure, such as
the frobenius norm, may be sufficient but we strongly believe
our proposal is more general and can detect more challenging
anomalies with which simpler norms will fail.

6. Experimental results

Detecting anomalies in video surveillance data depends cru-
cially on the reliability of the feature extracted and the anomaly
detection techniques used.

We tested the system on a corpus of trajectories acquired using
the automatic video-surveillance system composed respectively of
the single camera processing model, described in Section 3.1, and
the data fusion model of Section 3.2. The system is capable of
reliably detecting and tracking people from multiple overlapping
cameras under severe occlusion and different environmental

conditions, and can acquire and log both target trajectories and
appearances, and eventually project trajectories onto the ground
plane to correct distortions due to perspective.

The experiments were carried out on a real scenario as a test
bed and people’s trajectories were collected for a month. We fo-
cused on two-camera setup at the University of Modena and Reg-
gio Emilia, see Fig. 3; in this scenario, on ordinary working days,
many people typically walk in the scene following recurrent paths.

Modeling the behaviors of pedestrians in real world scenes is
likely to fail, because every scene has its peculiar normal paths
and associated behavioral patterns, moreover the same scene can
have various normal behaviors at different time of the day.

Hence, as mentioned above, we decided to focus on a scene-
centric approach that models the scene as a whole by a graph of
movements.

For assessing the capabilities of our detection algorithm, a cor-
pus of 1150 trajectories was collected by the surveillance system
over a period of several hours every day for more than a month;
among them 1131 were retained based on minimum length
criterion.

This corpus presents some challenging characteristics: the pres-
ence of fragmented trajectories, a huge variety of different paths,

Fig. 8. Results on Edinburgh Informatics Forum Pedestrian Database – dataset 14th Jul P2.
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the presence of two different people going on the same path in
opposite direction and the unpredictability of paths neither guided
or preformed by actors.

The anomaly detection is preceded by a learning stage where
the normal and most frequents behaviors of the scene are esti-
mated in conjunction with the mean and variance of the adopted
similarity measure. Hence we divided our normal trajectories in
two sets: the first 900 trajectories were used in the training phase,
while the other 231 normal trajectories were used in the test
phase.

To verify the proposed anomaly detection framework we man-
ually selected nine abnormal trajectories that were randomly scat-
tered among the normal ones constituting the test set. In the
considered abnormal behaviors, six uncommon path types, that
consist of completely new or poorly followed trajectories, are pres-
ent. Additionally, two sequences are of particular interest because
represent the typical behaviors that must be signaled and spotted
in an automatic video-surveillance systems: in the first one a theft
is stealing a bag and running away (Fig. 5a), while in the second
one a person is moving suspiciously around people walking
(Fig. 5b).

Fig. 4 plots the Trace distance measure (see Section 5.1) for the
test set. The nine ground-truthed anomalous events are marked
with an asterisk, the blue ones underline correctly detected events
while the black one missed detection. Additionally the green cir-
cles refer to the anomalous situations described in Fig. 5.

The system correctly detected 8 out of the 9 abnormal trajecto-
ries in total absence of false positive alarms. (times in which the
system declares as abnormal are marked by square on the distance
line).

These results suggest that this new proposed anomaly detection
framework is able to detect anomalies in a complex scenarios, such
as the one considered when the data present structure complexity
and noise due to the automatic tracking techniques. It is neverthe-
less important to emphasize that good performances depend
strongly on stable and long trajectories that can be extracted using
the surveillance system previously described.

To extensively evaluate the capability of the system in detecting
anomalies we tested the proposed anomaly detection framework
on publicly-available surveillance data from Edinburgh Informatics
Forum Pedestrian Database (http://homepages.inf.ed.ac.uk/rbf/
FORUMTRACKING/). This dataset contains several days of people
trajectories taken from a bird-eye view camera.

We chose to perform three different sets of tests on the dataset
26th of August and 14th of July, and the latter was split in two
parts, P1 and P2 to test the capability of the system to work with
both a large amount of training data (26th August) and a smaller
amount (14th July, P1 and P2). A subset of the trajectories of the
three datasets has been manually ground truthed and classified
by experts as normal or abnormal.

The tests have been performed evaluating the Laplacian Trace
distance measure of equation (5.5) and results are shown in
Figs. 6–8a, where ground-truthed anomalous trajectories are
marked with an asterisk and detected ones with a square. The sys-
tem was able to detect 46 anomalies out of 47 in a corpus of 3131
trajectories in the three datasets. Qualitative examples of normal
and abnormal people paths in this scenario are given in Figs. 6–8b.

Our successful application of the spectral graph-theoretical
framework is yet another demonstration to the power of statistical
pattern analysis on graphs and the robustness of the graph Lapla-
cian based algorithms. The main reason for the success in this case
relies in the simple representation of the trajectories in the graph
nodes and weights. The relative ease with which these algorithms
detected the anomalies in our tests call for further studies with
more crowded scenes and more ambiguous tracking, such as in air-
ports or train stations.

7. Conclusions

Automatic detection of suspicious behavior in surveillance vi-
deo cameras is clearly becoming a major technological challenge
for the world’s security systems. In this work we addressed one
important component of this problem – detecting anomalous peo-
ple’s trajectories by stationary overlapping cameras. We combined
two state-of-the art complementary methodologies. The first one is
a combination of tracking algorithms developed at University of
Modena and Reggio Emilia, and the second is a novel application
of algebraic graph theoretical methods in unsupervised statistical
machine learning, developed at Hebrew University of Jerusalem.

We combine the two methods by a sequence transformations
and statistical techniques. First, we discretize the tracked trajecto-
ries, using a Voronoi tessellation of randomly sampled points on
the training trajectories. This gives us a robust and statistically effi-
cient representation, without making any assumption on the
geometry of the scene or the nature of the trajectories. In the sec-
ond step, we represent transitions between adjacent Voronoi cells
as nodes in the graph, and a sequence of two consecutive transi-
tions as weights on the graph edges. This graphical representation
is sensitive to both the locations and dynamics of people’s move-
ments, again without any specific modeling assumption. In the
third step we filter the data by projecting this weighted symmetric
adjacency matrix on the low-frequency eigenvectors of its graph
Laplacian. This idea is motivated by the success of spectral cluster-
ing algorithms. Notice, however, that we do not perform any clus-
tering here, but rather filter-out the high frequency noisy
components of the trajectories in a clear analogy with lowpass fil-
tering by Fourier components in signal processing. This Laplacian
filtering further increase the robustness of the representation, with
the sole assumption that the larger connected components of the
trajectory graph are better characteristic of normal behavior. An-
other important idea is to perform this analysis on multiple time
scales, or different powers of the adjacency matrix. This allows
detecting anomalies in all scales of a new trajectory. Namely,
anomaly can be in one unusual step, or in an unusual combination
of long normal segments. Both types of anomalous trajectories can
be detected using the same principles, but on different time scales
of the same process. The final algorithmic novelty is in our choice
of the similarity measure. Here again we rely on the application of
geometrical invariants, in this case the canonical angles between
subspaces, as represented by the reference Laplacian eigenvectors.
We showed that several invariants measures that are based on the
angles are useful for detecting anomalous trajectories on the basis
of our tracking algorithms.

Our successful proof-of-concept calls for extensions and further
work in two related and highly needed directions: less reliable
tracking and more crowded scenes. We believe that the success
of these methods as demonstrated in this work will follow by fur-
ther progress in addressing these important extensions.
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