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ABSTRACT

In this paper we propose to integrate the recently introduces ORB descriptors in the currently favored approach
for image classification, that is the Bag of Words model. In particular the problem to be solved is to provide
a clustering method able to deal with the binary string nature of the ORB descriptors. We suggest to use a
k-means like approach, called k-majority, substituting Euclidean distance with Hamming distance and majority
selected vector as the new cluster center. Results combining this new approach with other features are provided
over the ImageCLEF 2011 dataset.
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1. INTRODUCTION

One of the most interesting trends in multimedia retrieval, side by side with the improvement of the repre-
sentation accuracy of descriptors by quantizing even more efficiently visual information, is the decrease of the
computational demands of the algorithms. Improving the retrieval performance while reducing the computa-
tional effort demanded to the processing devices is a great engineering challenge. Often this problem is solved
by finding approximatded solutions and a performance reduction that guarantee the most significant decrease in
processing time. This trend is also highly supported by the variety of multimedia devices which are mainly sold
to customers, such smartphones and tablets. These devices in fact have lower computational capabilities, lower
memory and the strong constraint of the battery life, therefore require a careful algorithmic design.

This problem is even more significant considering that the current trend in multimedia retrieval is to ap-
ply some sort of local description, composed by a region detection and a region description, which is usually
computationally demanding. Moreover, they are good candidates for object detection tasks, but if we want to
perform similarity retrieval or content classification (therefore creating a global representation of the content
itself), we have to employ the bag-of-words model to construct a visual vocabulary. Again, this procedure is
computationally very expensive since it requires a clustering step, often k-means.

Considering the ImageCLEF 2011 Photo Annotation dataset (Fig.1) as the reference throughout the man-
uscript, we can see that the last years best performance has been obtained by University of Amsterdam’s
Concept Detection System,1 combining 3 SIFT with Harris-Laplace corner detector, plus 3 SIFT with dense
multiscale sampling every 6 pixels, and a training with SVM using χ2 kernel. Therefore, authors obtained a
24000-dimension feature vector, with a training time of several days on an high end PC. The process is complex
even in testing, requiring descriptors extraction, nearest neighbor computation for every word of the vocabulary
and the classification with SVM.

In this work, we propose a solution to reduce the computational effort of this entire paradigm, accepting
a certain loss of performance but a significant gain in speed. We move towards much more easy to compute
features, covering gradient and color information. In particular, we exploited a class-based optimized histogram,
the CENTRIST feature expressing an histogram of local binary patterns2 and ORB,3 a binary local descriptor.
For the latter, we propose a novel vocabulary creation technique designed for binary data, by exploiting a majority
voting to define the centroid. In the following, we will detail how the combined use of these fast descriptors and
some optimizations on the binary nature of the data can lead to impressive processing speedup yet maintaining
good classification performance.



Figure 1. Sample images taken from ImageCLEF dataset.

2. LIGHTWEIGHT FEATURES

The SIFT keypoint detector and descriptor,4 although over a decade old, have proven to be remarkably successful
in a number of applications using visual features, including object detection and recognition, image stitching,
scene classification, etc. This descriptor has been also extended to color images in the form of RGB-SIFT,
Opponent-SIFT and C-SIFT, as described by van de Sande et al. in.5 However, it requires an intensive com-
putational effort, especially for real-time systems, or for low-power devices such as cellphones. This has led to
an increased research for replacements with simpler descriptors with lower computation demands. This trend
started with SURF,6 but since then a lot of other descriptors have been proposed in literature, always focusing
not only on performance but also on speed: we can refer to VLAD,7 BRIEF,8 DAISY9 among the most recent
proposals. There has also been research aimed at speeding up the computation of SIFT, most notably with GPU
devices,10 or the exploitation of approximate nearest neighbor techniques, starting from LSH11 up to product
quantization.12

Also a great variety of global features has been proposed to tackle the retrieval problem, for example color
histograms, GIST13 and HOG.14 Usually these features are easier to compute and do not require the quantization
step typical of the bag-of-words model which is necessary to create a global representation (an histogram of visual
words) from the aforementioned local descriptors.

Here we would like to explore a set of lightweight features, both local and global, in order to define a
retrieval strategy able to combine good performance and very low computational demands. We have in mind the
straightforward application of such algorithms in mobile devices, but we do not investigate this aspect in this
work.

2.1 ORB descriptor

In a recent paper, Rublee et al.3 propose a very fast binary descriptor based on BRIEF, called ORB, which is
rotation invariant and resistant to noise. They demonstrate through experiments how ORB is up to two orders
of magnitude faster than SIFT, while performing as well in many situations. The efficiency is tested on several
real-world applications, including object detection and patch-tracking on a smart phone. The investigation
of variance under orientation was critical in constructing ORB and decorrelating its components, in order to
get good performance in nearest-neighbor applications. An interesting aspect is that the authors have also
contributed a BSD licensed implementation of ORB to the community, via OpenCV 2.3.



The ORB descriptor (Oriented FAST and Rotated BRIEF) builds on the well-known FAST keypoint detec-
tor15 and the recently-developed BRIEF descriptor.8

The original FAST proposal implements a set of binary tests over a patch, by varying the intensity threshold
between the center pixel and those in a circular ring around the center. The Harris corner measure16 has been
used to provide an evaluation of the corner intensity. In ORB the missing orientation information of FAST
are instead complemented with Rosin’s corner intensity.17 In particular, the moment mpq of a patch Ip can be
computed as:

mpq =
∑
x,y

xpyqIp(x, y) (1)

We can further compute the centroid C as:

C =

(
m10

m00
,
m01

m00

)
(2)

and by constructing a vector from the patch center O to the centroid C, we can define the relative orientation
of the patch as:

ω = atan2 (m01,m10) (3)

The patch description has been provided starting from the BRIEF operator,8 a bit string representation
constructed from a set of binary intensity tests. Given a smoothed image patch Ip of an intensity image I, a
binary test τ can be performed as:

τ (Ip, x, y) =

{
1 : Ip(x) < Ip(y)

0 : Ip(x) ≥ Ip(y)
(4)

The final feature is defined as a vector of n binary tests:

b(Ip) =
∑

1≤i≤n

2i−1τ(Ip, xi, yi) (5)

The intra-patch locations for the tests, therefore the choice of the vector

L =

(
x1, . . . , xn
y1, . . . , yn

)
, (6)

influences the quality of the descriptor itself. A solution could be a grid sampling based set of sets by taking
into consideration the patch orientation, so multiplying these locations with the rotation matrix. However, by
analyzing the distribution of the tests, this solution brings a loss of variance and increase the correlation among
the binary tests (since tests along the edge orientation statistically produce similar outcomes). This heavily
impacts the descriptor effectiveness, describing redundancy more than distinctiveness. To solve the problem, the
authors3 employed a learning algorithm, sampling tests from 5 × 5 subwindows of the 31 × 31 patch window
chosen for the descriptor, running each test against all training patches. The result is a predefined set of 256
tests called rBRIEF.

2.2 Centrist descriptor

Census Transform (CT) is a non-parametric local transform originally designed for establishing correspondence
between local patches.18 Census transform compares the intensity value of a pixel with its eight neighboring
pixels, as illustrated in Eq. 7. If the center pixel is larger than (or equal to) one of its neighbors, a bit 1 is set
in the corresponding location. Otherwise a bit 0 is set.

32 64 96
32 64 96
32 32 96

⇒
110
1 0
110

⇒ (11010110)2 ⇒ CT = 214 (7)



The eight bits generated from intensity comparisons can be put together in any order, but we follow the
convention described by Wu et al.2 and collect bits from left to right, and from top to bottom). This is the
Census Transform value (CT value) for this center pixel. Census Transform is robust to illumination changes,
gamma variations, etc.

A histogram of CT values for an image or image patch can be easily computed defining the CENTRIST
descriptor (CENsus TRansform hISTogram).2 Only 16 operations are required to compute the CT value for a
center pixel (8 comparisons and 8 additional operations to set bits to 0 or 1). The cost to compute CENTRIST is
linear in the number of pixels of the region we are interested in. There is also potential for further acceleration to
the computation of CENTRIST, because it mainly involves integer arithmetic that are highly parallel in nature.

2.3 Color histogram descriptor

Working on large datasets for search and classification purposes fixed length signatures are often adopted, being
more easily used in different hashing and indexing tasks. Color histograms are a common solution, and using
a non uniform division of the color space could better describe the distribution of color aspects in the dataset.
Since we aim at exploiting color for visual object classification, we would like to employ a dynamic binning which
emphasizes the classes peculiarities. This is different from extracting a set of colors based on the data only (for
example by clustering in the color space), but is a task of feature selection by incorporating data classification
information in the definition of the color signature.

A color in a color space C is denoted by c. Given an image I, the color distribution for the image is

p(c|I) =
#{I(x, y) = c}

#I
. (8)

Given a class of images Cj , with j = 1, . . . , J , described by a training set of images I, we can define pj(c) as
the L1-normalized sum of the color distributions of all images in that class. We approach the problem of finding
a class optimized binning with a greedy procedure inspired to the median cut algorithm.19

A box is the set of colors contained within a parallelepiped defined by two extreme colors low (l) and high
(h), with l, h ∈ C:

b = {c ∈ C : lk ≤ ck ≤ hk, k = 0, 1, 2} (9)

To simplify the equations, from now on we will assume a three channels color space. We will equivalently write
b = (l, h). We call mj(b) the mass of box b in class j, such as

mj(b) =
∑
c∈b

pj(c). (10)

Algorithm 1 Class Based Color Space Partitioning

1: Compute cumulative histograms of training images pj for all classes
2: b← (0, 0, 0), (255, 255, 255) . Start with the whole color space
3: FindBestSplit(b)
4: insert(list, b) . list contains the color space partition
5: while size(list)< N do
6: b← max delta(list)
7: b0, b1 ← GetSplits(b)
8: FindBestSplit(b0)
9: insert(list, b0)

10: FindBestSplit(b1)
11: insert(list, b1)
12: end while



Algorithm 2 K-majority algorithm

1: Given a collection D of binary vectors
2: Randomly generate k binary centroids C
3: while centroids not changed do
4: for d ∈ D do . Assign data to centroids
5: cd ← arg min

c∈C
HammingDistance(c, d)

6: end for
7: for c ∈ C do . Majority voting
8: for d ∈ D|cd = c do
9: v accumulates d votes

10: end for
11: c′ ← Majority(v)
12: end for
13: end while

The total mass of b is

M(b) =

J∑
j=1

mj(b). (11)

We also denote C(b) as the class associated to box b, that is the class with maximum mass for the box:

C(b) = arg max
j

mj(b). (12)

The error induced by considering colors in b to be all of class Cj is defined as:

E(b) =
∑

j 6=C(b)

mj(b) = M(b)−mC(b)(b). (13)

We define a split of a box as s = (v, k), meaning that we divide the box along channel k at position v.
Splitting a box has the purpose of better describing the colors of that box, thus it is reasonable to assume that
this will lower the error. We call δ(b, s) the difference between the current error caused by the box b and the one
obtained after the splitting s. δ(b) = maxs δ(b, s) is the error induced by the best split. We will then choose to
split the box which maximizes its δ.

The algorithm employs a list of boxes, initially containing a single box enclosing the whole 3D color space,
described as b0. For example in an 8-bit RGB color space b0 = ((0, 0, 0), (255, 255, 255)). At each iteration step
we extract from the list the box which has the maximum delta value, then it is split such as to minimize the
sum of the errors after the split. The resulting boxes are put back in the list. The algorithm proceeds until the
required number of boxes/histogram bins is obtained. Pseudo code is given in Algorithm 1. A fast technique to
perform this computation, namely 3D Integral Histograms, has been proposed by Grana et al.20

3. A BAG OF WORDS MODEL FOR BINARY DESCRIPTORS

While histogram based features are directly ready to be used in image classification or retrieval tasks, local fea-
tures require an additional quantization step to be transformed into global image features. The classic approach
is to employ k-means clustering using Euclidean distance between feature vectors, and this has proved to be
effective, even if computationally demanding during the training phase.

Unfortunately when dealing with a vector of binary features, Euclidean distance is not the metric of choice,
and the average vector is undefined. A reasonable and effective distance between binary vectors is the Hamming
distance (the number of different bits in corresponding positions), but still no average is provided. We could
tackle the problem reverting to k-medoids (PAM algorithm),21 but this would require the computation of a full
distance matrix between the elements to be clustered, even worsening the problem. Therefore, to compute the



unsigned HammingDistance (__m128i *x, __m128i *y) {

__m128i xorValue = _mm_xor_si128(*x,*y);

unsigned __int64 *xorValue1 = (unsigned __int64 *)(&xorValue);

return (unsigned)__popcnt64(*xorValue1) + (unsigned)__popcnt64(*(xorValue1+2));

}

Figure 2. Example Hamming distance function in C language, using SSE4 instruction on a 64bit architecture.

centroid of a set of binary vectors based on the Hamming distance, we have introduce a voting scheme. In
particular, corresponding elements of each vector vote for 0 or 1. For determining each element of the centroid,
the majority rule is used, with ties broken randomly. We call this variation of the Lloyd algorithm “k-majority
algorithm” and we resume it in Algorithm 2.

The algorithm processes a collection of D binary vectors and seeks for a number k of good centroids, that will
become the visual dictionary for the Bag-Of-Words model. Initially, these k centroids are determined randomly
(line 2). At each iteration, the initial step (lines 4-6) is the assignment of each binary vector to the closest
centroid: the current binary vector d is therefore labelled with the index of the closest centroid. This part is
essentially shared by many common clustering algorithms. The second step (lines 7-12) is the majority voting
used to redefine the vector clustering. For each cluster c, we take into consideration every binary vector d
belonging to it. Every bit of an accumulator vector v is increased by 1 if the corresponding bits in d is 1. At the
end, the majority rule is used to form the new centroid c′: for each element vi in v, if the majority of vectors
voted for 1 as bit value in vi, then c′i takes 1, otherwise c′i takes 0. The algorithm iterates until no centroids are
changed during the previous iteration.

A fundamental advantage of the k-majority approach is that both the Hamming distance and the majority
voting step can work on the byte packed vector string. In particular the Hamming distance may be implemented
leveraging both SSE instructions and specific bitwise hardware instructions. An example optimized version of
an Hamming distance function is provided in Fig. 2.∗

By using Hamming distance and majority voting in the cluster assignment step, which has to go through all
elements to be clustered, we can obtain a speedup in the order of 100.

4. EXPERIMENTS

The ImageCLEF 2011 Photo Annotation and Concept-based Retrieval Tasks pose the challenge of an automated
annotation of Flickr images with 99 visual concepts and the retrieval of images based on query topics. The
participants were provided with a training set of 8,000 images including annotations, EXIF data, and Flickr
user tags. The annotation challenge was performed on 10,000 images. In our experiments we focused only
on the visual part of the challenge, ignoring the tag based additions, which is known to provide fundamental
improvements on the performance, but is outside the scope of this article

As a reference comparison we selected the University of Amsterdam concept detection system, which is an
improved version of the system from the ImageCLEF book,22 where they have performed additional experiments
which give insight into the effect of different sampling methods, color descriptors and spatial pyramid levels
within the bag-of-words model. Their runs roughly correspond to Harris-Laplace and dense sampling every 6
pixels (multi-scale) with 4-SIFT and Harris-Laplace and dense sampling every pixel (single-scale) with 4-SIFT.
However, instead of 4-SIFT, they only consider three ColorSIFT variants in 2011. One of these three is an
optimized color descriptor which allows these three to perform as good as 4-SIFT.

We implemented and tested the concept detection system using 3 color SIFT descriptors (namely RGBSift,
Opponent Sift and C-Sift) computed with multiscale dense sampling. The descriptors have been quantized with
the k-means algorithm and 99 SVMs have been trained with the concatenation of the 3 BoWs descriptors.
Parameters of the SVMs have been optimized with 4-fold cross validation and grid search. This was compared

∗If specialized hardware instructions are not available, it is still possible to employ some smart bitwise operations as
those proposed in http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel



Table 1. Results of the different descriptors and of their combination. When SIFT or ORB descriptors are indicated, also
the BoW model with 4096 bins was used.

Descriptor MiAP
Color Histogram 0.17
CENTRIST (3 channels) 0.21
Harris + RGB SIFT 0.23
Harris + 3 SIFT 0.27
Harris + 3 SIFT + Hist + CENTRIST 0.29
Dense + 3 SIFT + Hist + CENTRIST 0.30
ORB (3 channels) 0.21
Dense + ORB 0.22
Dense + ORB + Hist + CENTRIST 0.26

with the single features performance and their combination and the results are summarized in Table 1. Results
have been evaluated with MiAP (Mean interpolated Average Precision), using the ImageCLEF provided tools.

Looking at the results in Table 1 it is clear that the ORB descriptor is providing much less information,
when compared with the SIFT counterpart. Moreover we naively extracted the descriptor separately for the
RGB channels, in order to incorporate color information, but this falls way behind the color studies and the
optimization available in the color SIFT descriptor. Nevertheless it is interesting to note that the performance
are still significant and there is space to improve the descriptor performance.

The main result is instead related to the computational time required by the technique. The color descriptor
software available from the ISIS group (www.colordescriptors.com) has this caveat: “Clustering with 250,000
descriptors on 384D (ColorSIFT) descriptors will take at least 12 hours per iteration of k-means. By default,
250,000 descriptors will be extracted (no matter how many training images; the number of descriptors per image
is computed automatically so the total of 250,000 is reached). This is the number of descriptors needed to
construct a codebook of size 4,096.” Our experiments with their tool required around 8 hours per iteration,
probably because of better processors. The main point to stress is that the time required to complete a k-
majority iteration with 250,000 ColorORB descriptors (again with a codebook of size 4,096) required on average
16 seconds. This is 1800 times faster. Of course we still need to train the SVM classifiers, which require days to
be trained.

The fast computation of the ORB descriptor distances, may be observed also at classification time, because
the descriptor quantization step for the image under analysis is done with Hamming distance.

5. CONCLUSIONS

We described a technique to employ fast lightweight features in image description tasks, using concept detection
as our benchmark application. Even if the retrieval performance are lower then state of the art techniques, we
still get usable results with significantly lower computational requirements. This makes feasible to apply BoW
approaches in cases where its complexity made it impossible, such for example on mobile devices.
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