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Abstract
In this paper, a deep Siamese architecture for depth-based face verification is pre-

sented. The proposed approach efficiently verifies if two face images belong to the same
person while handling a great variety of head poses and occlusions. The architecture,
namely JanusNet, consists in a combination of a depth, a RGB and a hybrid Siamese
network. During the training phase, the hybrid network learns to extract complementary
mid-level convolutional features which mimic the features of the RGB network, simul-
taneously leveraging on the light invariance of depth images. At testing time, the model,
relying only on depth data, achieves state-of-art results and real time performance, de-
spite the lack of deep-oriented depth-based datasets.

1 Introduction
The computer vision community has broadly addressed the face recognition problem in both
the RGB and the depth domain. Traditionally, this problem is categorized in two tasks: face
identification and face verification. The former consists in the comparison of an unknown
subject’s face with a set of faces (one-to-many), while the latter consists in comparing two
faces in order to determine whether they belong to the same person or not (one-to-one).
The majority of existing face recognition algorithms is based on the processing of RGB
images, while only a minority of methods investigates the use of other image types, like depth
maps or thermal images [27, 28]. Recent works [29, 34, 39] employ very deep convolutional
networks for the embedding of face images in a d-dimensional hyperspace. Unfortunately,
these very deep architectures used for face recognition tasks typically rely upon very large
scale datasets which only contain RGB or intensity images, such as Labeled Faces in the
Wild (LFW) [13], YouTube Faces Database (YTF) [43] and MS-Celeb-1M [11].

The main goal of this work is to present a framework, namely JanusNet and depicted in
Figure 1, that tackles the face verification task analysing depth images only. In particular,
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Figure 1: Overview of the JanusNet architecture. During the training phase (a), the model
is composed of the depth and the hybrid network, which analyse depth face images, and the
RGB network, which analyses the RGB ones. Each Siamese network predicts the similarity
between an input pair of images. At testing time (b), only the depth and the hybrid networks
are employed for the face verification task.

the use of shallow deep architectures is investigated in order to obtain real time performance
and to deal with the small scale of the existing depth-based face datasets, like [4, 24]. In fact,
despite the recent introduction of deep-learning oriented depth-based datasets and cheap
commercial depth sensors, the usual size of depth datasets is not big enough to train very
deep neural models [3, 14, 22].
Furthermore, we aim to directly detect the identity of a person without strong a priori hy-
potheses, like facial landmark or nose tip localisation, which could compromise the whole
following pipeline. Under the hypothesis that intensity information improves the face verifi-
cation task, RGB side information is incorporated during the training phase.

In this paper, a combination of Siamese models, composed by a depth, a hybrid and
a RGB network, is proposed, taking partial inspiration from [12]. The Siamese networks,
exploiting the architecture depicted in Figure 2, are meant to predict whether two images
belong to the same person or not. During the training phase, the hybrid Siamese network
is conditioned by a specific loss that forces its feature maps to mimic the mid-level features
maps of the RGB network. At testing time, the RGB network is not employed, while the
depth and the hybrid Siamese network are fed with the same pair of depth images and jointly
predict if they belong to the same person.

2 Related Works

Face Verification. Traditional RGB-based face verification approaches tend to be sensitive
to variations in illumination, pose and expression changes [6, 26]. In the last decades, a
vast body of literature has exploited algorithms based on the classification of hand-crafted
features [1, 2, 16, 17, 18, 40, 46]. Recently, very deep neural networks have achieved best
performance on RGB images [38, 39]. Taigman et al. [39] presented DeepFace, a deep
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Figure 2: Architecture of each Siamese module, composed of two branches. The loss func-
tions Lhybrid-rgb1;2 are computed between each branch of the RGB and the hybrid Siamese
networks, on the last convolutional layers (marked with *).k, n, s, f c correspond to kernel
size, number of feature maps, stride and units. The network outputs a continuous similarity
score.

convolutional network designed for the veri�cation task. In particular, a Siamese architec-
ture is exploited in conjunction with pre-processing steps, such as face alignment and face
frontalization. In [34], a triplet loss and a face embedding space were proposed. A deep
convolutional network, calledFaceNet, is trained to directly optimise a common embedding
space, achieving state-of-art results at the time of publication. Kumaret al. [20] proposed
a SVM classi�er that learns the similarity of faces by recognizing the presence of visual at-
tributes,e.g. gender, age and ethnicity.
Several other works tackled the face veri�cation task exploiting Siamese architectures and
RGB images in order to learn a similarity metric directly from the data [5, 7, 10, 19]. Usu-
ally, these methods require a huge amount of training images and a threshold value on the
learned similarity metric to de�ne identities.

The recent introduction of cheap and accurate depth sensors, likeMicrosoft Kinector
Intel RealSenseseries, has increased the relevance on methods based on 2.5D (depth maps
or depth images) and 3D (point clouds) data, despite the lack of big-scale annotated datasets
[47]. Depth devices can be divided in respect to the technology used to retrieve depth infor-
mation,i.e. Structured Light, Time-of-Flight(ToF) orStereo Cameras. Each technology has
its pros and cons [33]. Generally, the acquired depth data presents light invariance, since it
is based on infrared light. Point cloud-based methods usually reconstruct 3D face models
exploiting an ICP-like registration algorithm [6]. This process is extremely sensitive to the
quality of the 3D input data and it often requires an expensive range camera. 2.5D images
are acquired with cheap and high-quality sensors that often provide RGB data as well.

Manteconet al. [24] used aPegasos SVM[35] with a substantial modi�cation of the pop-
ular Local Binary Patterns (LBP) algorithm, namelyDLQP feature, to solve theone-vs-all
face identi�cation task. Moreover, a new dataset, calledHigh-Resolution Range-based Face
Database(HRRFaceD), was proposed. Then, the method was improved in [25] through a
novel and highly discriminative face image descriptor, referred asBag-D3P. Both methods
assume the knowledge of all subjects during the training phase.
Furthermore, several methods [21, 22, 23, 32] combine the use of both RGB and depth data,
assuming the presence of both type of data at training and testing time, to compensate the
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relativity low resolution of depth maps. However, depth data are frequently exploited only
in a complementary way with respect to RGB images or point clouds [8, 9, 31]. In addition,
most of these methods are based on facial landmark detection to perform face alignment and
frontalisation and on a supplementary classi�er to perform a joint classi�cation of multi-
modal features.

Privileged Information . Also calledSide Information, Privileged Informationwas intro-
duced in [41]. The main idea is to add knowledge at training time in order to improve the
performance of the system at testing time. Several works [36, 42, 44] successfully proved
the strength of this approach when multi-modal data are available.
In [45], authors proposed to use depth images in order to improve the learning of a distance
metric for the face veri�cation and person re-identi�cation task on RGB images. Recently,
this concept was exploited by Hoffmanet al. in [12]. They trained a convolutional architec-
ture for RGB-based object recognition incorporating depth information during the training
phase. The hallucination branch, trained on RGB images, is able to mimic mid-level features
of the depth branch, improving the �nal accuracy score.
Differently from this work, we investigate the use of raw depth images as input in conjuc-
tion with Siamese architectures. Moreover, a simpler training procedure is adopted in order
to reduce the number of loss functions and to address the different �nal task,i.e. the face
veri�cation.

3 JanusNet

An overview of the proposed framework, calledJanusNet, is depicted in Figure 1.
The goal of the architecture is the face veri�cation task,i.e. estimating whether two face
images belong to the same person or not. The model is composed of three Siamese modules,
called depth, hybrid and RGB Siamese network, that share the same architecture, detailed in
Section 3.1. Depth image pairs are the input data of both the depth and the hybrid Siamese
network, while RGB images are the input of the RGB Siamese module. During the training
phase, abinary cross-entropyloss function is applied separately to the output of each module,
corresponding to the termsLdepth, Lhybrid andLrgb reported in Figure 1.
At the same time, two loss functions (Lhybrid-rgb1 andLhybrid-rgb2), de�ned as follows, are
applied between the last convolutional layer of each Siamese branch of the RGB and the
hybrid module:

Lhybrid-rgb1;2 =
1
N

N

å
n

�
yhybrid

n � yrgb
n

� 2
(1)

whereN is the number of feature maps of the last convolutional layer of the Siamese mod-
ules, whileyhybrid

n andyrgb
n are then-th feature maps of the hybrid and the RGB network,

respectively.
Since the input of these modules is composed of corresponding depth and RGB images, the
hybrid module is forced to learn visual features that are characteristic of RGB images from
depth maps. Speci�cally, the loss functionsLhybrid-rgb1;2 force the mid-level feature maps of
the hybrid network to mimic those of the RGB network.
Experimental results, reported in Section 4.3, con�rm that these features are complementary
to the features extracted from the depth Siamese module, improving the overall performance



BORGHI ET AL.: FACE VERIFICATION FROM DEPTH 5

(a) (b)

Figure 3: Depth and RGB sample frames taken fromPandoradataset. Part (a) contains
frames taken from sequencesS1;S2;S3 while part (b) from sequencesS4;S5, in which gar-
ments are introduced. Subset details are reported in Section 4.1.

of the proposed method. The �nal loss function for the proposed models is:

L = a
�
Lhybrid-rgb1 + Lhybrid-rgb2

�
+ b

�
Ldepth+ Lhybrid + Lrgb

�
(2)

wherea andb are the loss weights. With regard to the weight initialisation, the depth and
the RGB network are randomly initialised and pre-trained on depth and RGB image pairs,
respectively, while the hybrid network is initialised with the pre-trained weights of the RGB
module. The weights of the RGB network are not updated during the training of the hybrid
network in order to avoid that RGB mid-level features mimic the depth ones.
During the testing phase, theJanusNetarchitecture relies upon two modules: only depth
image pairs are processed by both the depth and the hybrid network (Fig. 1). In this phase,
the RGB module does not play a role and is therefore discarded.

3.1 Siamese Architecture

A shallow architecture has been adopted for the Siamese modules in order to deal with the
relatively small size of existent depth datasets and to achieve real time performance. The in-
put of each Siamese module is a pair of two images of size 100� 100. Each Siamese branch
presents 5 convolutional layers with kernel size 3� 3, stride 2� 2 and an increasing number
of feature maps.
In details, the convolutional layers have 64 and 128 kernels for the �rst two layers and 256
for the following ones. Convolutional layers are followed by an average pooling layer with
kernel size 2� 2, whose output is a tensor of shape 256� 1� 1.
The output tensors of the two branches are �attened and concatenated, obtaining a 512-d fea-
ture vector, and followed by 3 fully connected layers with 128, 32 and 1 units, respectively.
The output of the last layer of the Siamese network is the predicted similarity between the
input depth faces, expressed through a continuous value in the[0;1] range.Recti�ed Linear
Unit (ReLU) activation function is exploited in every layer, except the last one that applies a
Sigmoidactivation function.Stochastic Gradient Descent(SGD) is used for the training in
conjunction withdropout[37] andbatch normalization[15] which are employed for regu-
larisation purposes. An overview of the Siamese module is presented in Figure 2.
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Model Data type Accuracy

FaceNet [34] RGB 0.8232
Hybrid network Depth 0.7553
RGB network RGB 0.7631
Depth network Depth 0.7950
JanusNet Depth 0.8142

Table 1: Accuracy comparison for the face veri�cation task on the �xed test set of thePan-
doradataset. Results are reported on depth and RGB data for the Siamese modules, on depth
data for the proposed architecture, namelyJanusNet, and on RGB data for theFaceNet-like
architecture.

3.2 Head Crop

The head localisation task, which is out of the scope of this paper, is performed exploiting
depth information and Pandora dataset annotations. In particular, we accurately crop the head
including the relevant part of the foreground. Given the head center coordinates(xH ;yH ) in
the frame, a dynamic size cropping provides the head bounding box that includes a small
portion of the background. The head bounding box has the barycentre located in(xH ;yH ).
Width wH and heighthH are computed as follows:

wH =
fx � Rx

D
hH =

fy � Ry

D
(3)

whereD is the distance between the acquisition device and the head centre,fx;y are the
horizontal and vertical focal lengths (expressed in pixel) andRx;y represent the average width
and height of a generic face. In our experiments,fx;y = 365:337 andRx;y = 320. Final head
crops are then resized to 100� 100 pixels. Some example of the extracted head bounding
boxes are reported in Figure 3.

4 Experiments

We analyse the performance of the proposed architecture using two public datasets, both
containing the RGB and the corresponding depth face images. Firstly,JanusNetand its
single modules are trained and tested on the Pandora dataset. Then, the whole architecture
is trained, tested and compared with depth based-only state-of-art methods [24, 25].
In addition, we conduct an ablation study on the whole system, to understand the contribution
of each siamese network that forms the framework –i.e. the depth, the hybrid and the RGB
network (see Figure 1) – to the �nal result. Furthermore, we investigate how head poses and
occlusions in�uence the overall performance.
For full reproducibility, we release the source code of the proposed method along with the
list of the testing couples1 used to collect experimental results.

4.1 Datasets

Pandora. Borghi et al. [4] introduced thePandoradataset, which was speci�cally created
for the head and shoulder pose estimation tasks. The acquisition device (i.e. Microsoft Kinect

1http://imagelab.ing.unimore.it/janusnet
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Pegasos SVM JanusNet
LBP SIFT DLQP Bag-D3P max avg voting

Accuracy 0.5917 0.7194 0.7347 0.9430 0.9756 0.9877 0.9804
Improvement - +12.7 +14.3 +35.1 +38.4 +39.6 +38.9

Table 2: Accuracy comparison for the face recognition task on theHRRFaceDdataset. Com-
parison results are taken from [24, 25], in which different features are tested. See Equation
5a, 5b and 5c for details aboutmax, avgandvoting.

for Windows v2, also calledMicrosoft Kinect One) acquires only the upper-body part of the
subjects (10 males and 12 females). Even though it was not designed for the face recognition
task, this dataset presents remarkable challenges due to the signi�cant head pose variance and
numerous facial occlusions, both with objects (e.g. smartphones, tablets) and garments. In
particular, head pose angles range within the following intervals:roll : � 70� , pitch: � 100� ,
yaw: � 125� . As reported in the original work, we create a subject-independent test set using
subjects number 10, 14, 16 and 20. Furthermore, we create an additional subject-independent
validation set composed by subjects 9, 18, 21 and 22.
Each recorded subject presents 5 different sequences of frames. We split the sequences into
two sets. In the �rst set (here referred as sequencesS1, S2, S3), actions are performed with
constrained movements,i.e. yaw, pitch and roll angles vary one at a time, both for head and
shoulders. The second set (sequencesS4, S5) contains both simple and complex movements,
as well as challenging camou�age and occlusions, which even seriously affects the face
appearance in both the RGB and depth images. Experiments are performed on both these
two sets in order to investigate the effects of the mentioned differences.
Moreover, we split the dataset taking head pose angles into account. Given the angles yaw,
pitch and roll asr ;q ands , respectively, for each samplesrqs , we create three head pose-
based subsets, de�ned as follows:

A1 =
�

srqs j8g 2 f r ;q;s g : � 10� � g � 10� 	
(4a)

A2 =
�

srqs j9g 2 f r ;q;s g : g < � 10� _ g > 10� 	
(4b)

A3 =
�

srqs j8g 2 f r ;q;s g : g < � 10� _ g > 10� 	
(4c)

A1 consists of only frontal face images, while non-frontal face images are included inA2. A3
contains extreme head poses. As reported above, Siamese modules take image pairs as in-
put. Since a dataset withN images contains a huge number of possible pairs (i.e.

� N
2

�
unique

pairs), we created two �xed set of image couples, a validation and a test set, in order to allow
repeatable and comparable experiments. Reported results are obtained evaluating the model
on the �xed test set in correspondence to the lower loss achieved on the �xed validation set.

HRRFaceDatabase. Manteconet al. [24] introduced theHigh-Resolution Range-based
Face Database. It is composed of about 20k images of 18 different male and female subjects
recorded from different perspectives. Like Pandora, it was collected by using theKinect One
device and placing users at a distance of about 50cm from the sensor. All subjects exten-
sively rotated their head during the dataset acquisition. Training and testing sequences are
obtained by sampling from the same recording for each subject. We exploit the train-test split
reported in the reference work.HRRFaceDdataset contains already-cropped face images.
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Train / Test f S1;S2;S3g f S4;S5g f S1;S2;S3;S4;S5g

f S1;S2;S3g 0.8442 0.7464 0.7734
f S4;S5g 0.7921 0.7127 0.7426

f S1;S2;S3;S4;S5g 0.8049 0.7323 0.7620

Table 3: Accuracy comparison for the face veri�cation task as a function of different data
subsets. Results are reported for the proposed Siamese model on depth data only.

4.2 JanusNet

The results of the Siamese modules and theJanusNetarchitecture onPandoradataset are
reported in Table 1. It is worth to notice that the Siamese network reaches similar results on
both the RGB and depth data, con�rming that depth images provide as much discriminant
information as RGB images. The models are trained on theA2 subset (see Sect. 4.4) since
it assures better results. Notwithstanding the hybrid network obtains similar performance to
the RGB network, theJanusNetarchitecture, corresponding to the fusion of the depth and
the hybrid network, further improves the accuracy, con�rming that learned features from the
depth and the hybrid network are complementary and jointly participate to the �nal predic-
tion. The network is trained witha = b = 1, learning rate set to 0:002, momentum to 0:9 and
a batch size of 64. Furthermore, we report results of a deep model2, based on theFaceNetar-
chitecture and pre-trained on a subset of [11]. Even if it has not been �ne-tuned onPandora
dataset, we use it as a comparison to verify thatJanusNetachieves similar performance with
respect to the RGB state-of-art method, trained on a big-scale dataset. For a fair comparison,
we adopt a slightly different crop procedure to generate appropriate RGB input images for
FaceNet. Finally, we note that theFacenetnetwork has about 140M parameters, while only
3.2M parameters are exploited byJanusNetduring the testing phase.
From our experiments, the whole framework is able to run at more than 200 fps (4.5 ms per
frame) on a machine with ai7-6850k(3.60 GHz) processor and aNvidia GTX 1080Tiwith
extreme low memory hardware requirements (less than 1 GB). The architecture is imple-
mented using the popular frameworkPyTorch[30].

4.3 External Comparison

We compare the proposed framework with state-of-art methods based on depth data only.
In particular, we focus on depth images acquired with recentToF sensors. Competitors
[24, 25] implement methods for theFace Identi�cationtask, testing them onHRRFaceD
dataset. Hence, we adaptJanusNet, which is designed for theFace Veri�cation task, to
tackle theFace Identi�cationone. In particular, to deal with theone-to-manycomparison,
JanusNetis exploited to obtain a similarity score between all possible face couples contained
in HRRFaceDdataset. Thus, a variety of functions to determine the �nal identity can be used.
Givensas the testing sample whose identity needs to be determined,J(s;s0) as the �nal score
of theJanusNetgiven a pair of face images(s;s0) andSi as the set of images that belong to

2https://github.com/davidsandberg/facenet
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Train \ Test A1 A2 A3 f A1;A2g

A1 0.8016 0.6603 0.6179 0.6888
A2 0.8337 0.7859 0.7664 0.7950
A3 0.5054 0.5028 0.5044 0.5002

f A1;A2g 0.7984 0.7505 0.7273 0.7620

Table 4: Accuracy comparison for the face veri�cation task as a function of different angle
subsets. Results are reported for the proposed Siamese model on depth data only. The
description of head angle subsets is reported in Section 4.3.

thei-th subject, the following functions can be de�ned:

y = argmax
i

J
�
s;s0� ; 8s02 Si (5a)

y = argmax
i

avg
s02Si

J
�
s;s0� (5b)

y = argmax
i

#f Si j J(s;s0) � tg; 8s02 Si (5c)

In Equation 5a, the �nal identity corresponds to the couple with the max score, while the
identity with the highest mean value is chosen in 5b. In Equation 5c, a voting procedure, in
which every couple with a score greater than a thresholdt is counted, is exploited to �nd the
�nal identity. We found that best results are obtained using the mean scoring function, as
reported in Table 2. Regarding the training procedure, we trainJanusNetonPandoradataset.
Then, we �netune the depth network onHRRFaceDdataset. As shown in Table 2, our model
outperforms previous state-of-art methods with a clear margin.

4.4 Internal Comparison

In the following, we test the depth Siamese module as a function of different head poses
and subject sequences, de�ned in Section 4.1.Pandoradataset is used in every experiment.
Table 3 presents results obtained training and testing the model on different sequence types.
We note that including sequencesf S4;S5g in the training data reduces the performance on
the whole dataset, since strong occlusions could compromise the learning of the network.
Angle subset experiments, reported in Table 4, show that the face veri�cation task becomes
very challenging when head poses present extreme angles (A3), since only small portions
of faces are visible. Differently fromA3, training onA2 provides higher accuracy than the
other subsets and the whole dataset, since it provides a more representative distribution of
the exploited dataset, without outliers (extreme angles) nor too easy samples. Last line of
Table 4 contains performance of the model trained on the whole dataset de�ned asf A1;A2g.

5 Conclusion

In this paper, we present a framework, namelyJanusNet, that tackles the face veri�cation
task using only depth maps at testing time. Moreover, the training procedure boosts ac-
curacy performance by exploiting RGB images through a hybrid procedure. Shallow deep
convolutional architectures are used in order to deal with the limited size of existing depth




