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Abstract: This paper presents a method for recognizing human
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sophisticated appearance-based tracking able to cope with occlusions
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A segmentation technique based on mixture of Gaussians (MoG) is
then employed to extract and track significant points on this map,
corresponding to significant regions on the human silhouette. The
evolution of the mixture in time is analyzed by transforming it in a
sequence of symbols (corresponding to a MoG). The similarity between
actions is computed by applying global alignment and dynamic
programming techniques to the corresponding sequences and using
a variational approximation of the Kullback-Leibler divergence to
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1 Introduction

Labeling actions taking place in a given scene is a task of paramount importance
for behavior analysis. The main challenge relies on developing a method able to
cope with almost every type of action, even if they are very similar to other
one and also in the case of cluttered and complex scenarios. In the recent
past, many researchers have addressed action recognition in video sequences in
different contexts and with different purposes, ranging from sports video analysis
to video surveillance to human-centred computing. For several years, researchers
have concentrated on ad-hoc solutions to identify, often with heuristic rules,
specific actions, such as fighting, talking, etc. [Cupillard et al., 2002]. However,
recent advances in computer vision and statistical pattern recognition offer an
effective and often efficient help for the recognition of higher-level actions, such as
abandoned luggage detection, repetitive and abnormal path detection, or people-
to-people interactions.

Basic approaches for recognizing human actions are based on either the analysis
of body shape (in 2D or 3D) or the analysis of the dynamics of prominent points
or parts of the human body. More specifically, action recognition approaches
can be divided into two main groups [Gavrila, 1999] depending on whether the
analysis is performed directly in the image plane (2D approaches) or using a three
dimensional reconstruction of the action itself (3D approaches). The latter ones
have been widely adopted where building and fitting a 3D model of the body
parts performing the action is relatively simple due to controlled environmental
conditions and high-resolution view of the object. For instance, Regh and Kanade
in [Regh and Kanade, 1995] used a 27 degree-of-freedom (DOF) hand model
to recognize poses and gestures, while Goncalves et al. in [Goncalves et al.,
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1995] addressed the problem of analyzing human arm positions against a simple
uncluttered background.

These methods are sometimes unfeasible in many real-time surveillance
applications. Gavrila and Davis in [Gavrila and Davis, 1996] adopted a 22-
DOF human-body model to detect actions against complex background but their
approach constrains the user to wear a tight-fitting body suit with contrasting limb
colors to simplify the edge detection problem in case of self-occlusions. Despite the
complexity of the approach used, these methods can be applied only if a more or
less sophisticated model of the target exists.

On the contrary, 2D approaches analyze the action in the image plane relaxing
all the environmental constraints of 3D approaches but lowering the discriminative
power of the action-classification task. People action classification can be
performed in the image plane by either observing and tracking explicitly feature
points (local feature approaches [Laptev and Lindeberg, 2003]), or considering the
whole shape-motion as a feature itself (holistic approaches [Cucchiara et al., 2005;
Ke et al., 2007]).

Yilmaz and Shah in [Yilmaz and Shah, 2005] exploited people contour-points
tracking to build a 3D volume describing the action and their work represents
an example of local feature approaches. A compact representation of this action-
specific volume was presented and proved to be effective in distinguishing
among several predefined actions. Although this proposal results effective in most
situations, contour-points tracking is a difficult task to achieve in real-time systems
leading to a NP-hard optimization problem when points are occluding each other
and one-to-one matching is impossible.

Fei Fei et al. in [Niebles et al., 2006] proposed a feature-based approach that
searches for “spatio-temporal words” as a time-collection of points of interest and
classify them into actions using a pLSA (probabilistic latent semantic) graphical
model. Training a complex graphical model requires many examples of the desired
action and the “bag of words” feature extractor can be imprecise when a close
view of the subject is not available.

Holistic approaches, instead, directly map low-level image features to actions,
preserving spatial and temporal relations. Feature choice is a crucial aspect
to obtain a discriminative representation. An interesting holistic approach that
detects human action in videos without performing motion segmentation was
proposed by Irani et al. in [Shechtman and Irani, 2007]. They analyzed spatio-
temporal video patches to detect discontinuities in the motion-field directions.
Despite the general applicability of this method, the high computational cost
makes it unusable for real-time surveillance applications.

Some approaches tackled the action recognition problem by using multiple
cameras. In fact, several actions cannot be easily caught by a single view. The use
of multiple cameras looking simultaneously at the scene from different viewpoints
allows to consistently recognize the action. Most of the previous works using
multiple cameras tackle the problem by using a view-independent representation of
the action [Li and Fukui, 2007; Gritai et al., 2004]. Li and Fukui in [Li and Fukui,
2007], for instance, considered the case of an action seen by a moving camera: by
continuously changing the point of view, the action can be confused. The authors
used non-rigid factorization [Torresani et al., 2001] of non-rigid shapes (like the
human body is) and HMMs to model the action as a dynamic linear combination
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of basis shapes, whose weights contain the crucial information to recognize (in a
view-invariant way) the action. Gritai et al. in [Gritai et al., 2004], instead, use
anthropometric spatial constraints among body parts and proportions of them as
cues for matching actions performed from different viewpoints and in different
environments. Non-linear time warping is used to perform temporally invariant
matching. Despite the generality of these two approaches, both of them exploit
artificial markers or manual intervention to extract human body points to be
analyzed.

Some other works explicitly use multiple sources of information and thus
tend more to a “consistent” recognition of the actions. For instance, in [Syeda-
Mahmood et al., 2001] the action was modeled by the so-called “action cylinder”,
i,e. a 3D object that models the evolution of the 2D object shape in time.
View-independent action recognition is achieved by recovering the geometrical
transformation between the action model and a given action cylinder. Cupillard
et al. [Cupillard et al., 2002], instead, developed a combination mechanism to fuse
recognition achieved in different views by combining the moving region graphs
obtained by each view.

HMM-based techniques are commonly adopted to classify actions and learn
motion semantics directly from data. Lee et al. in [Ahmad and Lee, 2008] proposed
a method for recognizing actions from multiple views exploiting a combined local
and global optical flow computed on segmented blobs. The view invariance was
achieved using the normalize Zernike moments and recognition performed by a set
of HMM-based classifiers, one for each known action, in a ML fashion. Although
the method seems to perform correctly in many cases, optical flow approaches
are unsuitable to recognize actions in low contrast environments and especially
when single body parts are moving over the person silhouette, e.g. “drinking from
a glass” action. In addiction, HMM-based classifiers need an exhaustive training
set to avoid model overfitting and poor classification rates. In [Cuntoor et al.,
2008] an HMM-based classifier that exploits state-level transition probabilities to
model an action was proposed. One HMM was build for each action to classify
and state sequence used to discriminate among them using a space time trajectory
of marked point in the image plane as observed data. The authors described the
classification stage avoiding the data extraction discussion. The proposed classifier
could perform well if sufficient training data are available but the extraction of
precise trajectories is the major weakness of trajectory-based classifiers because
markers or body-part tracking is often unfeasible in real surveillance scenarios.

The system proposed in this paper is meant to solve the problem of using
artificial markers by automatically segmenting the human silhouette into a certain
number of relevant areas found in the image describing the motion evolution.
The tracking of the areas’ centroids produces 3D trajectories describing on a fine
grain the action of the person. The evolution of the mixture in time is analyzed
by transforming it in a sequence of symbols. Therefore, in order to compare two
actions, we define a novel approach for comparing two sets of trajectories based on
sequence global alignment and dynamic programming. Performed experiments on
the publicly available dataset used in [Gorelick et al., 2007] showed an excellent
discriminative power of this approach.

The rest of the paper is structured as follows: Section 2 presents a system
overview and introduces the main three steps of the proposed approach; a brief
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description of the object detection and tracking step is also reported; Section 3
explains in details how the action space-time trajectories are extracted, whereas
Section 4 explains how the STTs are compared to compute a similarity measure;
eventually, Section 5 reports the experimental results.

2 System Overview
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Figure 1 Scheme of the proposed system.

The proposed system is based on three main steps (Fig. 1):

e object detection and tracking: the moving people are segmented and tracked
from the image I' (z,y) at instant time ¢; by this step, a probability map
PM¢!(z,y) is obtained for each moving person (section 2.1);

e iterative space-time trajectory extraction: K main components of PM?
corresponding to K main body parts are automatically extracted and used to
model the action; EM algorithm is used to infer the parameter set A? of a 3-
variate mixture of K Gaussians (MoG) on PM?; finally, the sequences of the

MoGs along time represent space-time trajectories STT = {:&0,--- ,;&t}

(section 3);

e action recognition: a new action modeled as a STT is compared using global
alignment [Gusfield, 1997] to compute a measure of distance/similarity from
all the existing actions; the cost for aligning two MoGs corresponding to
two different actions is computed using a variational approximation of the
Kullback-Leibler divergence; the classification is performed with a minimum
distance classifier (section 4).

2.1 Object Detection and Tracking

For the sake of brevity, we report here only the key concepts of the object detection
and tracking step in order to provide sufficient information for further steps.
Complete description of the object detection step and tracking algorithm can be
found in [Cucchiara et al., 2003] and [Cucchiara et al., 2004], respectively. These
steps have a twofold scope: the first is to separate foreground /moving objects from
the background; the second is to obtain a rich feature set characterizing the action.

The first scope is achieved with the approach called SAKBOT (Statistical
And Knowledge-Based Object Tracker) [Cucchiara et al., 2003] which is based on
background suppression where the background model updating is performed with
an adaptive model and temporal median filtering. The updating is empowered by
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selectivity, i.e. the background model should not include the interesting moving
objects if their motion is low or zero for a short period.

Once that moving objects/people have been segmented, they need to be tracked
along time. For our purposes, tracking also represents a way for incorporating
action evolution in a single observation by integrating in time single pixel
membership. In other words, we create a probability map PM (p) where each value
defines the probability that the point p belongs to the object. The value of PM (p)
is updated with the segmentation results of the last n frames: further details can
be found in [Cucchiara et al., 2004]. As shown in Fig. 2, PM represents a fine-
grain description of the action, removing useless information such as the person’s
appearance.

a) Bending (b) Jumping (c) Jumping (d) Jumping (e) Walking f) Running
Jack in place
() Gallop ) Skip ) Hands wave
sideways

Figure 2 Examples of PM computed for different actions. Brighter pixels correspond
to higher probability.

3 Action Space-Time Trajectories

To model the complete evolution of the action we use a 3D observation Of =
(z,y,2), where z = PM® (x,y). In other words, the PM image is treated as 3D
data to be clustered jointly in space and probability domains. Data clustering has
the objective to identify main areas in the person’s silhouette characterized by a
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3D distribution similar to a given model. The 3D data are modeled with a 3-variate
mixture of K Gaussians:

K
p(O'A") =Y mN (O'|u;, =) (1)
k=1

where At = {u!, X 7'} is the set of parameters of the MoG, including the mean
vector p = {1, -+, px } for each of the K components, the covariance matrix X
and the weight vector w. The single 3-variate Gaussian can be written as:

1 1
MOl = e ()
exp {50~ w = 0w} @)

By using the EM algorithm the set of estimated parameters At = {ﬁt, st ?rt}

can be easily inferred. To initialize the EM on the first frame (¢t =0) we use
the k-means clustering on PM?°. Conversely, the initialization for the subsequent
frames (¢t > 0) is based on the estimate on the previous step, i.e. Al = Al~!
(see also the feedback arrow in Fig. 1). This re-initialization process is based
on the assumption that body parts do not move significantly between two
consecutive frames (supposing a reasonably-high frame rate). Some examples of
the segmentation achieved by this process with K = 3 components are reported in
Fig. 3, where a person performing the “jumping jack” action.

i H ;
P62 w0 e

(d)

(b)
Figure 3 Example of the segmentation with MoG.

The set of parameters Al represents the locations (in the 3D space) of the
body parts (through the means fi?), their reliability (through the means f)t) and
their importance (through the weights 7%). How these values change in time is
representative of the evolution of the action and constitutes a good descriptor
of it. Think for instance to the action “walking”: some body parts (e.g., those
corresponding to the torso) will follow a straight path with almost-constant
covariance and weight; others (such as those associated to the legs) will vary
significantly in all the parameters. Therefore, in order to model properly the
action’s dynamics the sequence of A is collected to form the space-time trajectory

(STT): STT = {307... ,At}
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4 STT Comparison for Action Recognition

The previous sections describe our methodology to model an action as a sequence
(or trajectory) of MoG (modelled by the set of the parameters A). In order to
cluster or classify similar actions, single trajectories STT from different actions
should be compared. To this aim, defined a and b the actions to be compared,
a similarity measure Q (STT;,STT;) between every trajectory ¢ of action a and
every trajectory j of action b is needed. Due to segmentation inaccuracies and
different velocities in performing actions, the MoG distributions composing STT;
and STT; cannot be directly compared point by point. Since STTs are indeed
time series, we can borrow from bioinformatics a method for comparing sequences
of data in order to find the best inexact matching between them, also accounting
for time shifts, difference sequence lengths and statistical uncertainty.

Time shifts and different lengths can be accounted by using data alignment
techniques, which find the best (with respect to a cost/similarity measure)
alignment of single symbols composing the sequence. Among the many
existing techniques, we used the Needleman-Wunsch global alignment algorithm
[Needleman and Wunsch, 1970; Gusfield, 1997]. On the other hand, the statistical
uncertainty is afforded by not matching directly the data, but using a statistical
pdf (i.e., a 3-variate MoG) and a measure of similarity between pdfs. In this way,
noisy data and inaccuracies can be handle easily.

Global alignment of two sequences S and 7T is obtained by first inserting spaces
(gaps), either into or at the ends of S and T so that the length of the sequences
will be the same; then, every symbol/space in one of the sequences is matched
to a unique symbol/space in the other. The algorithm is based on the concept of
“modification” to the sequence (analogous to the mutation in a DNA sequence),
which can be due to indel operations (insertion or deletion of a symbol) or to
substitutions. By assigning different weights/penalties to these operations it is
possible to measure the degree of similarity of the two sequences.

Unfortunately, this algorithm is very onerous in terms of computational time
if the sequences are long. For this reason, dynamic programming is used to reduce
computational complexity to O (nr-ng), where ny and ng are the lengths of
the two sequences. Dynamic programming overcomes the problem of the recursive
solution to global alignment by not comparing the same subsequences for more
than one time, and by exploiting tabular representation to efficiently compute the
final similarity score.

Each element (p, ¢) of the table contains the alignment score of the distribution

P (O\Ap) of sequence T with the symbol p (0\11‘1) of sequence S, where p <O|11>

is the same of equation 1 using the parameter A estimated through the EM
described in Section 3. The score can be measured statistically as a function
of the distance between the corresponding distributions. If the two distributions
result sufficiently similar the score should be high and positive, while if they differ
much the score (penalty) should be negative. The best alignment can be found by
searching for the alignment that maximizes the global score.

Specifically, in our specific case the symbols of the sequences correspond to
a mixture of Gaussian distribution, represented by its parameters. Thus, we
need a measure of distance between mixtures. The commonly-used Bhattacharyya
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distance for comparing pdfs cannot be used in this case. In fact, due to the
presence of summation in the mixture expression, a closed-form solution of the
Bhattacharyya distance for mixtures is not available. Iterative solutions exist
which approximate the integral with a summation, but they are either too
approximated or too slow to be computed. An alternative technique for comparing
distributions is provided by the Kullback-Leibler divergence (see equation 3).

K

(9. 21i2g. 5

)

> T,

k

K TN

KL (p (O|Kp) p <0|Aq)) = —///Z%z (x,y,z\ﬁz,fli) In k;1
k=1 N

=1

Unfortunately, in our case p<0|11> is a mixture, thus the KL

divergence is not analytically tractable, nor does any efficient computational
algorithm exist. However, many approximated approaches have been
proposed [Hershey and Olsen, 2007]. Among the approaches proposed,
the most suitable (since it preserves the majority of the KL properties)
is based on the variational computation of the lower bound of the log
likelihood. In fact, given two generic mixtures f(x)="> m,fq(x|P,) and

g(x) = > wpgp(z|Py), with f, and g, the unimodal distributions and P, and P,
b

their corresponding parameters, the KL divergence can be written as:

L(flg) = /f )in f(x dx—/fw)lng
= By [I0 f(2)] — B [l g(2) (4)

Being Ly (9) = E¢(o) [Ing(x)] = Efa) [lnzwbgb ] the log likelihood, we can
)

use a variational approach to find a (more tractable) lower bound. Introducing
the variational parameters ¢y, > 0 such that ) ¢y, = 1, we obtain the following
b

equations:

Ly(9) =Ej@

Y wbgb(x)l
b

Z d)b\a In ij:l(x)] = Lf (gv ¢) (5)
b a

= Ef)

Since the variational log likelihood L (g,¢) is a lower bound of the log
likelihood Ly (g), the best bound can be found by maximizing it with respect to
¢. Thus, the following equation [Hershey and Olsen, 2007] can be derived as:

wbe_KL(fa‘gb)

S e KL(Falay)
b/

$b|a = (6)

(9. 21727, 27

dxdyc
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Applying the same procedure for L;(f), the KL divergence of eq. (4) can be
approximated by the following variational KL divergence:

3 e KLUalfor)
p— a/
KLyar (f|g) = Zﬂ—a In ZwbefKL(fa\gh) (7)
a
b

Please note that the KL values reported in eq. (7) are now KL divergences
between single unimodal distributions (either f, or g¢,), which can be treated
analytically. In our specific case, the KL divergences of eq. (7) can be brought back
to the KI. between multivariate normal distributions. An analytical formulation
of the KL divergence between normal distributions has been reported in [Hershey
and Olsen, 2007]. Given the two distributions N (O|p1,31) and N (O|pg, 21),
as defined in equation 2, we can write:

1, 13 M
KL =Sl -
Wil =g g =5 F
1 o 1 _
+ 5t (3% + 5 ((Nl —p2)" By (pr — uz)) (8)

where N7 is the dimension of X7.

Considering that KL divergence vary from 0 to +inf, while global alignment
requires a score which must be positive and less than 1 (with 1 corresponding
to identical sequences), we transform the distance KL in the coefficient cx =
exp{—KL}. Assuming that two distributions are sufficiently similar if the
coefficient is above 0.5 and that the score for perfect match is 42, whereas the
score (penalty) for the perfect mismatch is -1 (that are the typical values used in
DNA sequence alignments), we can write the general similarity score as follows:

2‘(CKL) ifCKL 205
o (p7 q) =< 2- (CKL — 0.5) ifexr < 0.5 (9)
0 if p or g are gaps

After computing the similarity score, it must be normalized to obtain the
distance €2 (7, S).

5 Experimental results and discussion

We tested the proposed similarity measure for action analysis on the publicly
available dataset used in [Gorelick et al., 2007]. The dataset* is composed by 9
actions, described in Fig. 2, performed by several actors in an unconstrained way
for a total number of 93 repetitions. Since the main goal of these experiments is
to demonstrate the robustness of the proposed measure for action classification,
we used directly the segmentation masks provided on the website (for every action
sequence), without using the SAKBOT system for object detection and tracking.

*Downloadable at the web address http://www.wisdom.weizmann.ac.il/“vision/SpaceTimeActions.html
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‘ H Bend ‘ Jack ‘ Jump ‘ Jmp in Place ‘ Walk ‘ Run ‘ Side ‘ Skip ‘ Wave. ‘

Bend 9 0 0 0 0 0 0 0 0
Jack 0 9 0 0 0 0 0 0 0
Jump 0 0 9 0 0 0 0 0 0
Jmp in Place 0 0 0 9 0 0 0 0 0
Walk 0 0 0 0 9 0 0 0 0
Run 0 0 0 0 0 9 0 0 0
Side 0 0 0 0 0 1 8 0 0
Skip 0 0 0 0 2 1 0 6 0
Wave. 0 0 0 0 0 0 0 0 18

Table 1 Confusion matrix.

The probability masks are then clustered in the spatio-probability space using
the multivariate Gaussian approach of Section 3 and obtaining the sequences of
pdfs that describe the action. The chosen dataset contains several challenges:
first, the poor resolution with which the actions are performed (video frames are
130290 pixels); additionally, several actions are similar and may cause difficult
or ambiguous classification for a completely automatic technique. In particular,
looking at the probability mask of the “skip” action (Fig. 2(h)), it looks very
similar to the one of the “running” (Fig. 2(f)) or “walking” (Fig. 2(e)) actions.
This visual similarity can affect the precision of the system that may confuse these
actions, leading to inaccuracies in the final classification results.

The test campaign has been performed by processing all the videos and
computing the probability masks for every sequence. The similarity measure was
then tested adopting a nearest-neighbor classifier in a leave-one-out scheme. More
precisely, every sequence was modeled singularly, compared against the remaining
sequences of the whole dataset and assigned to the closest one using the similarity
measure presented in Section 4.

The system exhibits a overall accuracy of 96% using the one-nearest neighbour
classification. Moreover, the accuracy raises to the 98% using a voting scheme
where the five nearest neighbours are taken into account, each of them voting for
an action and the most voted action is selected. The voting procedure is feasible
only when more than a single repetition for every action is present in the dataset,
at least equal to the half of the number of the considered nearest neighbours plus
one. When this condition does not hold, the voting procedure tends to produce
errors even if the first nearest neighbor, that is the closest one to the considered
action, is correct. The errors are motivated by the lack of possible correct votes
due to the poor presence of the action in the training data. For this motivation,
the voting procedure is applicable only when a prior knowledge about the training
data is available and a sufficiently high number of repetitions for every action is
present. Adversely, it should be avoided when the classification is performed on a
dataset not rich or incomplete.

Looking at the confusion matrix shown in Tab. 1 we can observe that most
of the errors are related to the “skip” action that, as previously stated, exhibits
visual similarities in terms of probability masks with both the “walk” and “run”
actions. We can still raise the number of components of the mixture used to cluster
the probability masks in order to obtain a more fine grain action description but
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when the video resolution is poor, as may often occur in video surveillance data,
the experimentally-chosen value of 3 components appears to be a good trade-off
between performances and accuracy.

Regarding the efficiency of the algorithm the computational time for modeling
and comparing two actions is around 10 seconds’, where most of the time is
spent performing the EM algorithm on each probability mask of the sequence.
A possible solution to reach quasi-realtime performances is to subsample the
action probabilities sequence, keeping in mind that the probability masks is a time
integral of the person motion itself with the effect of being a redundant descriptor
if considered in a frame-by-frame fashion. For example, one could divide the action
sequence in three equal parts (one at the beginning, one in the middle and one
concluding part) and compute the similarity for these three parts separately. This
leads to a computational time of less then 1 second for modeling and comparing
two actions, and to a slight degradation of the accuracy (from 96% to 91%).

6 Conclusions

We presented a statistical model for action recognition that uses a holistic
approach based on probability masks and Gaussian Mixture clustering as action
descriptor as well as an inexact alignment-based measure for effectively comparing
actions by similarity. The proposed measure demonstrates good results both
in terms of accuracy and performances, and exhibits the desirable property of
working in real time when the action sequence is subsampled and few descriptors
are considered. The experimental results on a publicly available action dataset
demonstrate that the algorithm accuracy is satisfying even when the actions are
visually similar and that the proposed measure is robust to changes in the actors,
resulting similar also for the same action performed by different people in different
ways.
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