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Abstract—This paper addresses auto-iris compensation. inefficient. Moreover, the DSP board is used also for many
Auto-iris can be really troublesome for motion detection and other tasks (video communication, trip-wire emulation, and
tracking techniques based on background or frame differenc- g4 o) further reducing the availability of resources for
ing, since it can change quickly the average intensity of the imol tati This limit. toaeth ith th it
current frame. To cope with this, we introduced a two-step auto- our Imp ementaton. IS imit, p_ge er wi e.reques 0
iris compensation approach in our traffic monitoring system. WOrk in almost every real condition makes our job a great

First, the auto-iris detection is based on the computation of the challenge.
average of the luminance difference obtained by background
suppression. Then, if an auto-iris is detected, the compensation ~ Existing commercial solutions rarely exploit temporal

phase is started. In this phase, the auto-iris’ behaviour is information of the scene: objects are detected by motion
empirically modelled and, thus, compensated. Experimental detection techniques based, for examplejratuctive loops
results demonstrate the accuracy of the proposed approach, . . . ' . ’
with both quantitative measures and visual analysis. emulation [1] or trip-wire em_ula_tlo_n These approaches,
however, are not able to discriminate between real and
I. INTRODUCTION apparent moving objects. With these premises, tracking of

Vision-based traffic surveillance systems are nowaday80Vving objects is fundamental to keep history and identity
very diffuse. This has been made possible by the receft objects. In general, a tracking algorithm should be robust
development in hardware and software for image processifig Shape and appearance changes, robust to occlusions, and
that leaded, on the one hand, to cheaper cameras afinputationally efficient.
acquisition devices, and, on the other hand, to the advancesAmong the many requirements, one of the more challeng-
in image processing and computer vision techniques, capati)IL|

. - % is being robust to illumination changes. In particular,
to become more reliable and efficient. There are, however, " o iic can pe very problematic in the case of

many cases in which computer vision techniques are likel : .
any . . pu q ytg ckground suppression techniques. In fact, when the camera
fail in automatic traffic surveillance. These cases are frequen

in real conditions, when a system is supposed to work Onreacts to a change in the scene by varying the camera's
' y 1P ifls opening, that is increasing or decreasing the average

extreme weather conditions. such as fod or Snow: worki Timinance of the image, the difference between the current
in case of heavy traffic and’ with traffic ?n both dir’ectionsr'lﬁ;arne and the reference background image can result in

. Y . ’mdany false positives and in the merge of the moving objects
handling occlusions due to other vehicles, trees, poles, a?ﬂ a single, image-wide object. This compromises tracking

igtlj)?a;l ((jstectguge r;ftizﬁsgdoggﬂgilﬁs; tﬁs'ggngos:jt;::ifi?gerformance and, thus, computed traffic parameters. Fig. 1
9. S gt eports two examples of positive (i.e., the average luminance
(e.g., due to camera auto-iris) illumination changes; etc. .

. . ) is increased) and negative (i.e., image is darker) auto-iris
This work is the result of a collaboration between one ofo ) 9 ( 9 )

. SO ) ) mpared with an unmodified frame.
the leading companies in vision-based traffic surveillance, P
Traficon N.V. (Belgium), and our group at University of This paper addresses the problem of detecting and manag-
Modena and Reggio Emilia (ltaly). This collaboration bringsng auto-iris in the case in which this functionality can not be
together the expertise of Traficon in making these systenaisabled on the camera, either because there are other tasks
working in real life and our expertise in tracking andthat need it or because it can not be disabled at all. The auto-
segmentation of moving objects, with the aim of providingris detection relies on the assumption that, in case of auto-
reliable solutions to a real system. This project has thgis, the points detected as foreground (i.e., different from the
final aim of implementing on a DSP board (based on thackground) are numerous. Once the “auto-iris condition” is
TMS320DM642 Video/lmaging Fixed-Point DSP) advancedietected, two choices are possible: the first is to consider
algorithms for traffic surveillance. Unfortunately, the computhe extracted information as unreliable and to suspend the
tational resources o.f the QSP u§ed are limited: in partlgulqﬁ;ocessing, avoiding to output any result; the second is to try
the lack of a floating-point unit makes many operationgo compensate the effects of auto-iris, continuing the moving
. 4 . object segmentation process. Since, in our cases, the auto-
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(a) Unmodified frame (b) Example of positive auto-iris (c) Example of negative auto-iris

Fig. 1. Example of simultaneous crossing of two objects.

I[I. RELATED WORKS insignificant for these regions.

o ) ) ) Li and Leung [11] use a texture difference measure inte-
~ The existing techniques for the detection and the filtefy a0 with an intensity difference to detected the changes.
ing of the illumination changes are divided on plxel—levelg

i i ~Several works studied the use of homomorphic image fil-
and region-level approaches. Most of the motion detectlo[%ring [12] [13]. For Lambertian surfaces with constant

systems use background suppression. In these systems, iltjectance the relation between observed intengitjllu-
mination changes are really troublesome since they affeglination; and reflectance is multiplicative and, under the
frame differencing, making highly probable to detect aggqmptions reported in [14], it is possible to approximately
moving also parts of the image that are still. An approach to,mpensate the illumination changes by taking the logarithm
manage these changes is to (implicitly or explicitly) selecks e image before applying a linear high-pass filter. Unfor-

the detection threshold based on the estimated noise of fifately, in these cases the camera noise distribution must
difference frame [2] or based on the gray level distribution of o known, which is not always possible. In addition, all

the background points (as in§3], Pfinder [4], the mixture yhese works are proposed as a general filter for illumination

of Gaussians [5][6]). Aach and Kaup in [7] propose aregionzhanges and do not work properly with specific strong
based change detection that employ a Bayesian formulatigﬂ‘,jmgeS caused by auto-iris.

using a Gibbs/l\_/lark(?v Randpm Fields framewor_k. Moreover, e approaches proposed in the literature are, generally,
they use a noniterative multiple threshold algorithm to ada ite complex and often rely on floating-point computation.

the region differences to the context changes. This approagh yhese reasons, they resulted to be unsuitable to our case,
starts with the hypothesis that moving objects tend to ha\f?ecause of the DSP limitations reported in section I.
a compact shape with smooth boundaries and false alarms

manifest themselves an irregular speckles spread randomly I1l. SYSTEM ARCHITECTURE
over the image plane, not always true in real installations. The system is composed by three main modules: segmen-
Bichsel [8] employed the distribution of both image deriva—t tion. tracki d derstandi Fig. 2 '
tives and image difference for moving object detection. petion. tracking, and scene understanding (Fig. 2).
assumed that the moving objects are enclosed by significants -
edges. However, this might not be always true. [ Imagel

These approaches can detect and suppress well the nois¢
but are sensitive to illumination changes due to the compari-
son of just intensity distribution at region level. Region-based ' | Foreground object| FO' Shadow SCENE
illumination independent statistics have been also proposed| " i i NONG

in the literature. Skifstad and Jain [9] presents a Shading rﬁé | T{
|
|

Model (SM) which uses the variance of the intensity ratio

calculated in the corresponding regions of two images to | Saocron valdation > TRackinG ‘
detect changes. However, they present few tests with Iimitedl A

illumination changes. Liu et al. [10] defined Circular Shift — T SEGMENTATION  ___ J T
Moment (CSM) to define a difference metric for detecting

structural changes between consecutive frames under time- Fig. 2. The architecture of the system.

varying illumination.

All these methods employ ratio of intensities or sum of The segmentation module aims at extracting tsual
intensities to describe structural characteristics of a regionbjects The first step uses the background suppression
This means they may perform poorly over the dark regionisy subtracting the current background mod#l from the
in images due to the denominator of the ratio becomingurrent framel®. The points are extracted and grouped with



a labelling process into a sétO! of foreground objects at  Correspondence matrix is solved parsing the matrix for
instant timet¢. This set contains both relevant objects and’Os. In the case of one-to-onEO — T correspondence,
other outliers, such as shadows and noise. we investigate the track to look for anothié) that matches
To identify shadow points we used a deterministic apbetter with this track. If there is not, the track is labelled as
proach, similar to that proposed in [15], but duly modifiednovingor stoppeddepending on its motion. Otherwise, the
for computational reasons to work directly in the YCbCrcorrespondence is not performed and th@ is labelled as
space (instead of the HSV space adopted by [15]). A poimotNew that means a new track will not be created. In the
p (resulted from the segmentation) is classified as shadaase of a one-to-zero correspondence, a track is created and
point if its value in the maskM*(p) is 1: labelled asnew Instead, in the case of one-to-MO — T
. It () correspondence, all the tracks in the set are investigated. If
SM*(p) = { 1 if as< By = BANT<TsN®=<TH ogne of these has a better matching value with another
0 otherwise it is removed from the set. If at the end of investigation
(1)  the set is empty, thiS/O is labelled asnotNewand a
where the subscrigt” denotes thé” component of a vector new correspondent track is not created, because there is
in the YCbCr space, and, 8 € [0,1]. The values¥ and an high probability that a vehicle has been divided by the
® can be obtained from equations reported in [15] approxkegmentation process into more parts. If the set of tracks is
mating the huefl with the angle between vectors formed bynot empty and contains only one element, this is managed as
Cb andCr and the saturatioy’ with the respective modules one-to-one correspondence. Eventually, if in the set there are

difference: more than one tracks, we choose the track that with longer
trajectory and closer to th& O. After the corresponding
\II:’ 62 1 (1502 — /(BL )2 1 (BL,)2 : d
V&) + Ue) = VI CZ) (Bew) process, all the tracks not matched with af9 are classified
o — (I&wBey+16,BE ) _ (2) asundetected
(62 +UED?) (B, +(BE,)?) The knowledge about’O and their status is exploited

Experimental results proved that this transformation dod# a selective background model. To this aim we adopt the
not affect significantly the performance [16]. Objects inmodel proposed in [17] but with some changes. In particular
the set FO! considered too small (taking the perspectivéhe above-mentioned track status is used to selectively update
distortion into account) are discarded as noise. Thé/set ~ the background model and to exclude stopped vehicles from
of visual objects obtained after the size-based validation f5€ updating [16]. _ _
processed by the tracking module that computes for eachScene understanding is a high-level module. It receives the
framet a set of trackg™ = {T7}, ..., T% } and assigns to each information from the tracking and switches on an alert when
track T} a status labelmoving stoppednew or undetected @ stopped vehicles is detected.

An object is classified astoppedwhen it is detected as
still in the current frame and in at least a certain number oflv' AUTO-IRIS DETECTION AND SUPPRESSION

previous frames. The system described in section Il relies heavily on a
We use a basidirectional tracking module. The tracking correct background suppression, since subsequent tasks are
process starts with the association between #@* and deeply influences by this. Thus, when an auto-iris occurs,
Tt~! sets. To this aim a Booleatorrespondence matrils  like in the cases reported in Fig. 1, these techniques are
created. The basic rule for the association betwiéérs and  likely to fail. From the analysis of the previous approach
tracks is the direction. If & O has a direction divergent with reported in section Il, two classes of approaches are possible
the track and its state is netopped the correspondence is to cope with the auto-iris problem: the first is to pre-process
forbidden. Otherwise, supposing eablO and each track the input frame to make background differencing invariant
T are provided together with its bounding baxB and to illumination changes, while the second includes two-
its centroid ¢, a visual object and a track are marked astep approaches in which firstly the auto-iris is detected

correspondent if th8ounding Box DistancéBBd) defined and then, if present, compensated. Since the first class is
in Eq. 3 is lower than a threshold: typically computationally intensive, our approach belongs to

BBd(VO,;,Ty) = the second class.

= o énngk, (mln{ch?mk + ek“ ) ”Ck + ekvyjH}) (3) A. Detection
v € BB; Our auto-iris detection is based on the computation of the
This threshold is decreased in the case of stopped vehicleserage of the luminance difference obtained by background
since, for them, looking for higher distances increases thmuppression. The rationale is that auto-iris leads to the quick
probability to match with a wrong blob. Once the checkincrease of the average of the luminance difference. To
on the minimumBBd is successful, the value in the cor-distinguish between real foreground points (belonging to
respondence matrix is set to the sum betweenAliki and moving objects) and points detected as foreground due to
the weighted difference ratio of the areas. Both values athe auto-iris, we make the assumption that real moving
calculated with real world coordinates using the calibratiopoints differ from the background more than those due to

parameters provided with the videos. auto-iris. Therefore, the points whose difference w.r.t. to



the background is limited are counted by computing th Positive auto-iris
cardinality Np' of the following setD?:

D* = {p(z,y) € I'|
AV — Ty, < Iy (%,y) — By (z,y) < AY" ' + Ty}

30 7
wherel* and Bt indicate the current image and background £ — ﬁ

(4) 40 ) _

. . . : s i
respectively, and the subscript stays for the luminance g ﬁg,,é ‘(H
in the YCbCr color spaceAY*~! is the average variation ;-5 0 R MP , , , ‘ : |
computed on the previous frame as follows: 20 Va0 A _f-"BD 90 120 180 180 210 240

> ILy(z,y) — By(z,y) 2
¢ p(zy)eD? a0
AY = Npt (5) Inte nsity Y

The two threshold¥y andT}, are set to two different values

(e.9.,T;, = 70 and Ty = 50) to account for the different Fig. 4. Channel Y, positive auto-iris. Each series corresponds to a different

behaviours in the case of positive and negative auto-iris. 1™

AY'? is greater than a threshold the auto-iris is detected

and the compensation phase is started. This method hasese graphs are used to infer a model for the effects of the

demonstrated a good accuracy in detecting auto-iris, resultiagto-iris in order to compensate them.

in a 8.5% of false positives and a 0.6% of false negatives (at From Figs. 3 and 4 it is evident that the modification

frame level) over a test set of four sequences. of the luminance due to auto-iris is a function of the

B. Compensation gra;; level (x axis). Ir? partlcu_lar, it is propor_t|0nal to _the
AY* value reported in equation 5. From this analysis, a

In section Il we reported examples of adaptive backgroung,yymon peak in the average difference can be identified.
(or frame) differencing., in which, for instance, the detection, the case of negative auto-iris, denoting this peak with
thresholds are adaptively selected. Some more advancgd from our empirical evaluation we can approximate the
methods for adaptive thresholding have been proposed, &yesponding intensity?y and the corresponding difference

that in [12] where the detection threshold is modified inp, . proportionally with respect to the average luminance of
function of the number of points detected as moving iRhe current frameﬁ:

the neighborhood of the current point. The rationale is that _

moving pixels corresponding to moving objects are spatially Py =1, +35 (6)
close. However, this approach does not consider that the Pay = —ﬁ* 1.1 @)
value of the change in luminance is proportional to the

current value of the pixel. The auto-iris compensation model has been defined as

non-linear with a square function for the portion of the
histogram at the left of the peak, and a linear function

Negative auto-iris for the portion at the right. The compensated luminance of
20 the pixel Il (z, y) is calculated as:
10 t
0 L : : : : : : (Py —1% (z.v))? P
8 a0 ; P T y) = ( pz | ~Pay if Ly(wy) <Py
g 0 . " y\%Y tPAY
% . i (2557;§éi,gx)w)*PAy otherwise
My 4 _ N | ®
i 4 - Since positive variations of the luminance due to auto-iris
0 2 il had different behavior (see Fig. 3), different values are used:
70 Py =240
Inte nsity ¥ PY IT* 1 8 (9)
AY — 1y .

. . . . _ In this case, the experiments highlight the independence
Fig. 3. Channel Y, negative auto-iris. Each series corresponds to a dlfferen% . —
frame. of Py from the average luminance of the franié. The

auto-iris compensation model for the positive variations has
Our approach is based on empirical evaluation of thbeen defined with two linear functions at the left and at the
results over a large test set of videos. From it, the graphight of the peakP. The compensated luminance of the pixel
in Figs. 3 and 4 report the histogram distributions of thés computed as:
difference w.r.t. to the background in luminance. Different It (2,9)+ Pay -
Co : . —~ e if I, (p) < Py
series in the graphs are obtained for successive frames st . — Py
. . y LY (255—1% (2,y))* Pay .
correspondent to an auto-iris and collecting the values only 55—y otherwise
in an area of the image in which actual motion is absent. (10)
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Accuracy performance of Video 1

Accuracy performance of Video 2
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Fig. 5. Segmentation results.

To improve the model, chromatic channetsb(and Cr) scenes and the fourth in a tunnel scene. To measure the
have been also investigated, but their enhancement in autwcuracy, we useplrecisions (called alsgpositive predictive
iris compensation is negligible. valug and specificity¢ [18] calculated as:

V. EXPERIMENTAL RESULTS

Thanks to our collaboration with Traficon N.V., we have n= _Ir ; &€= _IN
the availability of tens of existing CCTV source sites to TP+ FP TN+ FP
experiment our system in many different conditions. Alwhere F'P indicates the number dalse positives(points
videos provided by Traficon N.V. were acquired at 720x576f background classified as foregroundj N the number
from analog interlaced camera sources at 25 fps. For thig false negativegpoints of foreground classified as back-
work, the frames have been downscaled to 360x288 @round),TP the number oftrue positives(points of fore-
reduce computational complexity; in addition, the nearestround correctly classified) anfiN that of true negatives
neighbor algorithm used for the scaling has also reduced tkgoints of background correctly classified). To emphasize the
interlaced effect. These videos suffer the classical problent®provement achieved by our approach, the ratio between
of real camera installations: auto-iris, low quality image, autthe precision obtained with our method and that obtained
white-balance, sudden illumination changes. In section I\Wyith the normal segmentation is used. Similarly, we compute
we explained how we detect with accuracy the auto-irighe ratio for the specificity. These values (reported with
Results reported in this section are meant to demonstrate thligrk lines in Fig. 5) measure the speedup in precision and
accuracy comparing our method with the normal backgrourgpecificity obtained by our approach. We also report (in gray
difference (without auto-iris compensation) and with a globdines in Fig. 5) these values with respect to theaptive
adaptive thresholdingmethod. Theadaptive thresholding thresholding Graphs in Fig. 5 evidence how our algorithm
method calculates a new value of the detection threshowdorks very well, compensating the illumination changes due
looking at the average difference of luminosity betweeito auto-iris in all the sequences.
current frame and background. Figs. 6-9 show some snapshots of the segmentation results,

In order to evaluate the performance, a manual grounshere white pixels correspond to foreground points. It is
truth segmentation has been performed on four salient smeticeable that the segmentation is significantly improved.
guences with string auto-iris effect, three in different outdoor Eventually, since auto-iris does not last many frames,

11)



TABLE |
TIME PERFORMANCE PER FRAME

Video 1 Video 2 Video 3 Video 4 Average
Normal bkg diff. | 3.97 msec| 3.80 msec| 3.84 msec| 3.72 msec|| 3,83 msec
adaptive thresh. | 3.92 msec| 3.88 msec| 3.64 msec| 3.72 msec|| 3.79 msec
proposed appr. | 4.20 msec| 4.90 msec| 6.76 msec| 4.02 msec|| 4.97 msec

as outdoor and tunnel scenes. More sophisticated approaches
have been investigated, but the limited resources of the DSP
board on which our system is (at the end) implemented make
these approaches unsuitable. In fact, we also demonstrate that
the proposed two-step approach is computationally inexpen-

adaptive(c) With proposed ap-
proach

(a) Without auto-iris(b) With
compensation thresholding

Fig. 6. Segmentation results on Video 1

adaptive(c) With proposed ap-
proach

(a) Without auto-iris(b) With
compensation thresholding

Fig. 7. Segmentation results on Video 2

R

'.’a\‘h#\ i \
(a) Without auto-iris(b) With  adaptive(c) With proposed ap-
compensation thresholding proach

Fig. 8. Segmentation results on Video 3

adaptive(c) With proposed ap-
proach

S N

(a) Without auto-iris(b) With
compensation thresholding

Fig. 9. Segmentation results on Video 4
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the computational overhead introduced by our algorithm

with respect to adaptive thresholding or normal backgrou
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