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Abstract— This paper addresses auto-iris compensation.
Auto-iris can be really troublesome for motion detection and
tracking techniques based on background or frame differenc-
ing, since it can change quickly the average intensity of the
current frame. To cope with this, we introduced a two-step auto-
iris compensation approach in our traffic monitoring system.
First, the auto-iris detection is based on the computation of the
average of the luminance difference obtained by background
suppression. Then, if an auto-iris is detected, the compensation
phase is started. In this phase, the auto-iris’ behaviour is
empirically modelled and, thus, compensated. Experimental
results demonstrate the accuracy of the proposed approach,
with both quantitative measures and visual analysis.

I. INTRODUCTION

Vision-based traffic surveillance systems are nowadays
very diffuse. This has been made possible by the recent
development in hardware and software for image processing
that leaded, on the one hand, to cheaper cameras and
acquisition devices, and, on the other hand, to the advances
in image processing and computer vision techniques, capable
to become more reliable and efficient. There are, however,
many cases in which computer vision techniques are likely to
fail in automatic traffic surveillance. These cases are frequent
in real conditions, when a system is supposed to work on a
24/7 basis. Some examples are: working during night or in
extreme weather conditions, such as fog or snow; working
in case of heavy traffic and with traffic in both directions;
handling occlusions due to other vehicles, trees, poles, and
so on; detecting high-speed vehicles; being robust to both
natural (e.g., due to clouds occluding the sun) and artificial
(e.g., due to camera auto-iris) illumination changes; etc.

This work is the result of a collaboration between one of
the leading companies in vision-based traffic surveillance,
Traficon N.V. (Belgium), and our group at University of
Modena and Reggio Emilia (Italy). This collaboration brings
together the expertise of Traficon in making these systems
working in real life and our expertise in tracking and
segmentation of moving objects, with the aim of providing
reliable solutions to a real system. This project has the
final aim of implementing on a DSP board (based on the
TMS320DM642 Video/Imaging Fixed-Point DSP) advanced
algorithms for traffic surveillance. Unfortunately, the compu-
tational resources of the DSP used are limited: in particular,
the lack of a floating-point unit makes many operations
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inefficient. Moreover, the DSP board is used also for many
other tasks (video communication, trip-wire emulation, and
so on), further reducing the availability of resources for
our implementation. This limit, together with the request to
work in almost every real condition makes our job a great
challenge.

Existing commercial solutions rarely exploit temporal
information of the scene: objects are detected by motion
detection techniques based, for example, oninductive loops
emulation [1] or trip-wire emulation. These approaches,
however, are not able to discriminate between real and
apparent moving objects. With these premises, tracking of
moving objects is fundamental to keep history and identity
of objects. In general, a tracking algorithm should be robust
to shape and appearance changes, robust to occlusions, and
computationally efficient.

Among the many requirements, one of the more challeng-
ing is being robust to illumination changes. In particular,
camera auto-iris can be very problematic in the case of
background suppression techniques. In fact, when the camera
reacts to a change in the scene by varying the camera’s
iris opening, that is increasing or decreasing the average
luminance of the image, the difference between the current
frame and the reference background image can result in
many false positives and in the merge of the moving objects
in a single, image-wide object. This compromises tracking
performance and, thus, computed traffic parameters. Fig. 1
reports two examples of positive (i.e., the average luminance
is increased) and negative (i.e., image is darker) auto-iris
compared with an unmodified frame.

This paper addresses the problem of detecting and manag-
ing auto-iris in the case in which this functionality can not be
disabled on the camera, either because there are other tasks
that need it or because it can not be disabled at all. The auto-
iris detection relies on the assumption that, in case of auto-
iris, the points detected as foreground (i.e., different from the
background) are numerous. Once the “auto-iris condition” is
detected, two choices are possible: the first is to consider
the extracted information as unreliable and to suspend the
processing, avoiding to output any result; the second is to try
to compensate the effects of auto-iris, continuing the moving
object segmentation process. Since, in our cases, the auto-
iris is very frequent, suspending the processing will result
in a completely unreliable tracking. Therefore, we propose
a new method that tries to compensate negative and positive
auto-iris modifications to obtain a good segmentation (and,
consequently, a robust tracking) also in these cases.



(a) Unmodified frame (b) Example of positive auto-iris (c) Example of negative auto-iris

Fig. 1. Example of simultaneous crossing of two objects.

II. RELATED WORKS

The existing techniques for the detection and the filter-
ing of the illumination changes are divided on pixel-level
and region-level approaches. Most of the motion detection
systems use background suppression. In these systems, illu-
mination changes are really troublesome since they affect
frame differencing, making highly probable to detect as
moving also parts of the image that are still. An approach to
manage these changes is to (implicitly or explicitly) select
the detection threshold based on the estimated noise of the
difference frame [2] or based on the gray level distribution of
the background points (as in W4 [3], Pfinder [4], the mixture
of Gaussians [5][6]). Aach and Kaup in [7] propose a region-
based change detection that employ a Bayesian formulation
using a Gibbs/Markov Random Fields framework. Moreover,
they use a noniterative multiple threshold algorithm to adapt
the region differences to the context changes. This approach
starts with the hypothesis that moving objects tend to have
a compact shape with smooth boundaries and false alarms
manifest themselves an irregular speckles spread randomly
over the image plane, not always true in real installations.
Bichsel [8] employed the distribution of both image deriva-
tives and image difference for moving object detection. He
assumed that the moving objects are enclosed by significants
edges. However, this might not be always true.

These approaches can detect and suppress well the noise,
but are sensitive to illumination changes due to the compari-
son of just intensity distribution at region level. Region-based
illumination independent statistics have been also proposed
in the literature. Skifstad and Jain [9] presents a Shading
Model (SM) which uses the variance of the intensity ratio
calculated in the corresponding regions of two images to
detect changes. However, they present few tests with limited
illumination changes. Liu et al. [10] defined Circular Shift
Moment (CSM) to define a difference metric for detecting
structural changes between consecutive frames under time-
varying illumination.

All these methods employ ratio of intensities or sum of
intensities to describe structural characteristics of a region.
This means they may perform poorly over the dark regions
in images due to the denominator of the ratio becoming

insignificant for these regions.
Li and Leung [11] use a texture difference measure inte-

grated with an intensity difference to detected the changes.
Several works studied the use of homomorphic image fil-
tering [12] [13]. For Lambertian surfaces with constant
reflectance the relation between observed intensityy, illu-
mination i and reflectancer is multiplicative and, under the
assumptions reported in [14], it is possible to approximately
compensate the illumination changes by taking the logarithm
of the image before applying a linear high-pass filter. Unfor-
tunately, in these cases the camera noise distribution must
be known, which is not always possible. In addition, all
these works are proposed as a general filter for illumination
changes and do not work properly with specific strong
changes caused by auto-iris.

The approaches proposed in the literature are, generally,
quite complex and often rely on floating-point computation.
For these reasons, they resulted to be unsuitable to our case,
because of the DSP limitations reported in section I.

III. SYSTEM ARCHITECTURE

The system is composed by three main modules: segmen-
tation, tracking, and scene understanding (Fig. 2).

Fig. 2. The architecture of the system.

The segmentation module aims at extracting thevisual
objects. The first step uses the background suppression
by subtracting the current background modelBt from the
current frameIt. The points are extracted and grouped with



a labelling process into a setFOt of foreground objects at
instant timet. This set contains both relevant objects and
other outliers, such as shadows and noise.

To identify shadow points we used a deterministic ap-
proach, similar to that proposed in [15], but duly modified
for computational reasons to work directly in the YCbCr
space (instead of the HSV space adopted by [15]). A point
p (resulted from the segmentation) is classified as shadow
point if its value in the maskSM t(p) is 1:

SM t(p) =

{
1 if α ≤ It

Y (p)
Bt

Y
(p)

≤ β ∧ Ψ ≤ τS ∧ Φ ≤ τH

0 otherwise
(1)

where the subscriptY denotes theY component of a vector
in the YCbCr space, andα, β ∈ [0, 1]. The valuesΨ and
Φ can be obtained from equations reported in [15] approxi-
mating the hueH with the angle between vectors formed by
Cb andCr and the saturationS with the respective modules
difference:

Ψ =
∣∣∣√(It

Cr)2 + (It
Cb)2 −

√
(Bt

Cr)2 + (Bt
Cb)2

∣∣∣
Φ = (It

CbBt
Cb+It

CrBt
Cr)

2

((It
Cb

)2+(It
Cr

)2)((Bt
Cb

)2+(Bt
Cr

)2) . (2)

Experimental results proved that this transformation does
not affect significantly the performance [16]. Objects in
the setFOt considered too small (taking the perspective
distortion into account) are discarded as noise. The setV Ot

of visual objects obtained after the size-based validation is
processed by the tracking module that computes for each
framet a set of tracksT t = {T t

1 , ..., T t
m} and assigns to each

trackT t
i a status label:moving, stopped, new, or undetected.

An object is classified asstoppedwhen it is detected as
still in the current frame and in at least a certain number of
previous frames.

We use a basicdirectional tracking module. The tracking
process starts with the association between theV Ot and
T t−1 sets. To this aim a Booleancorrespondence matrixis
created. The basic rule for the association betweenV Os and
tracks is the direction. If aV O has a direction divergent with
the track and its state is notstopped, the correspondence is
forbidden. Otherwise, supposing eachV O and each track
T are provided together with its bounding boxBB and
its centroid c, a visual object and a track are marked as
correspondent if theBounding Box Distance(BBd) defined
in Eq. 3 is lower than a threshold:

BBd(V Oj , Tk) =
= min

xk ∈ BBk,
yj ∈ BBj

(min {‖cj , xk + ~ek‖ , ‖ck + ~ek, yj‖}) (3)

This threshold is decreased in the case of stopped vehicles,
since, for them, looking for higher distances increases the
probability to match with a wrong blob. Once the check
on the minimumBBd is successful, the value in the cor-
respondence matrix is set to the sum between theBBd and
the weighted difference ratio of the areas. Both values are
calculated with real world coordinates using the calibration
parameters provided with the videos.

Correspondence matrix is solved parsing the matrix for
V Os. In the case of one-to-oneV O − T correspondence,
we investigate the track to look for anotherV O that matches
better with this track. If there is not, the track is labelled as
movingor stoppeddepending on its motion. Otherwise, the
correspondence is not performed and theV O is labelled as
notNew, that means a new track will not be created. In the
case of a one-to-zero correspondence, a track is created and
labelled asnew. Instead, in the case of one-to-mV O − T
correspondence, all the tracks in the set are investigated. If
one of these has a better matching value with anotherV O,
it is removed from the set. If at the end of investigation
the set is empty, thisV O is labelled asnotNew and a
new correspondent track is not created, because there is
an high probability that a vehicle has been divided by the
segmentation process into more parts. If the set of tracks is
not empty and contains only one element, this is managed as
one-to-one correspondence. Eventually, if in the set there are
more than one tracks, we choose the track that with longer
trajectory and closer to theV O. After the corresponding
process, all the tracks not matched with anyV O are classified
asundetected.

The knowledge aboutV O and their status is exploited
by a selective background model. To this aim we adopt the
model proposed in [17] but with some changes. In particular
the above-mentioned track status is used to selectively update
the background model and to exclude stopped vehicles from
the updating [16].

Scene understanding is a high-level module. It receives the
information from the tracking and switches on an alert when
a stopped vehicles is detected.

IV. AUTO-IRIS DETECTION AND SUPPRESSION

The system described in section III relies heavily on a
correct background suppression, since subsequent tasks are
deeply influences by this. Thus, when an auto-iris occurs,
like in the cases reported in Fig. 1, these techniques are
likely to fail. From the analysis of the previous approach
reported in section II, two classes of approaches are possible
to cope with the auto-iris problem: the first is to pre-process
the input frame to make background differencing invariant
to illumination changes, while the second includes two-
step approaches in which firstly the auto-iris is detected
and then, if present, compensated. Since the first class is
typically computationally intensive, our approach belongs to
the second class.

A. Detection

Our auto-iris detection is based on the computation of the
average of the luminance difference obtained by background
suppression. The rationale is that auto-iris leads to the quick
increase of the average of the luminance difference. To
distinguish between real foreground points (belonging to
moving objects) and points detected as foreground due to
the auto-iris, we make the assumption that real moving
points differ from the background more than those due to
auto-iris. Therefore, the points whose difference w.r.t. to



the background is limited are counted by computing the
cardinalityNpt of the following setDt:

Dt = {p(x, y) ∈ It|
|∆Y t−1 − TL ≤ It

Y (x, y)−Bt
Y (x, y) ≤ ∆Y t−1 + TH} (4)

whereIt andBt indicate the current image and background,
respectively, and the subscriptY stays for the luminance
in the YCbCr color space.∆Y t−1 is the average variation
computed on the previous frame as follows:

∆Y t =

∑
p(x,y)∈Dt

It
Y (x, y)−Bt

Y (x, y)

Npt
(5)

The two thresholdsTH andTL are set to two different values
(e.g., TL = 70 and TH = 50) to account for the different
behaviours in the case of positive and negative auto-iris. If
∆Y t is greater than a threshold the auto-iris is detected
and the compensation phase is started. This method has
demonstrated a good accuracy in detecting auto-iris, resulting
in a 8.5% of false positives and a 0.6% of false negatives (at
frame level) over a test set of four sequences.

B. Compensation

In section II we reported examples of adaptive background
(or frame) differencing, in which, for instance, the detection
thresholds are adaptively selected. Some more advanced
methods for adaptive thresholding have been proposed, as
that in [12] where the detection threshold is modified in
function of the number of points detected as moving in
the neighborhood of the current point. The rationale is that
moving pixels corresponding to moving objects are spatially
close. However, this approach does not consider that the
value of the change in luminance is proportional to the
current value of the pixel.

Fig. 3. Channel Y, negative auto-iris. Each series corresponds to a different
frame.

Our approach is based on empirical evaluation of the
results over a large test set of videos. From it, the graphs
in Figs. 3 and 4 report the histogram distributions of the
difference w.r.t. to the background in luminance. Different
series in the graphs are obtained for successive frames
correspondent to an auto-iris and collecting the values only
in an area of the image in which actual motion is absent.

Fig. 4. Channel Y, positive auto-iris. Each series corresponds to a different
frame.

These graphs are used to infer a model for the effects of the
auto-iris in order to compensate them.

From Figs. 3 and 4 it is evident that the modification
of the luminance due to auto-iris is a function of the
gray level (x axis). In particular, it is proportional to the
∆Y t value reported in equation 5. From this analysis, a
common peak in the average difference can be identified.
In the case of negative auto-iris, denoting this peak with
P , from our empirical evaluation we can approximate the
corresponding intensityPY and the corresponding difference
P∆Y proportionally with respect to the average luminance of
the current frame,It

Y :

PY = It
Y + 35 (6)

P∆Y = −It
Y ∗ 1.1 (7)

The auto-iris compensation model has been defined as
non-linear with a square function for the portion of the
histogram at the left of the peakP , and a linear function
for the portion at the right. The compensated luminance of
the pixel Ĩt

Y (x, y) is calculated as:

Ĩt
Y (x, y) =


(

(PY −It
Y (x,y))2

P2
Y

P∆Y

)
− P∆Y if It

Y (x, y) ≤ PY

(255−It
Y (x,y))∗P∆Y

255−PY
otherwise

(8)
Since positive variations of the luminance due to auto-iris

had different behavior (see Fig. 3), different values are used:

PY = 240
P∆Y = It

Y ∗ 1.8
(9)

In this case, the experiments highlight the independence
of PY from the average luminance of the frameIt

Y . The
auto-iris compensation model for the positive variations has
been defined with two linear functions at the left and at the
right of the peakP . The compensated luminance of the pixel
is computed as:

Ĩt
Y (x, y) =

{
It

Y (x,y)∗P∆Y

PY
if It

Y (p) ≤ PY

(255−It
Y (x,y))∗P∆Y

255−PY
otherwise

(10)



(a) (b)

(c) (d)

Fig. 5. Segmentation results.

To improve the model, chromatic channels (Cb and Cr)
have been also investigated, but their enhancement in auto-
iris compensation is negligible.

V. EXPERIMENTAL RESULTS

Thanks to our collaboration with Traficon N.V., we have
the availability of tens of existing CCTV source sites to
experiment our system in many different conditions. All
videos provided by Traficon N.V. were acquired at 720x576
from analog interlaced camera sources at 25 fps. For this
work, the frames have been downscaled to 360x288 to
reduce computational complexity; in addition, the nearest
neighbor algorithm used for the scaling has also reduced the
interlaced effect. These videos suffer the classical problems
of real camera installations: auto-iris, low quality image, auto
white-balance, sudden illumination changes. In section IV,
we explained how we detect with accuracy the auto-iris.
Results reported in this section are meant to demonstrate this
accuracy comparing our method with the normal background
difference (without auto-iris compensation) and with a global
adaptive thresholdingmethod. Theadaptive thresholding
method calculates a new value of the detection threshold
looking at the average difference of luminosity between
current frame and background.

In order to evaluate the performance, a manual ground
truth segmentation has been performed on four salient se-
quences with string auto-iris effect, three in different outdoor

scenes and the fourth in a tunnel scene. To measure the
accuracy, we usedprecisionη (called alsopositive predictive
value) andspecificityξ [18] calculated as:

η =
TP

TP + FP
; ξ =

TN

TN + FP
(11)

where FP indicates the number offalse positives(points
of background classified as foreground),FN the number
of false negatives(points of foreground classified as back-
ground),TP the number oftrue positives(points of fore-
ground correctly classified) andTN that of true negatives
(points of background correctly classified). To emphasize the
improvement achieved by our approach, the ratio between
the precision obtained with our method and that obtained
with the normal segmentation is used. Similarly, we compute
the ratio for the specificity. These values (reported with
dark lines in Fig. 5) measure the speedup in precision and
specificity obtained by our approach. We also report (in gray
lines in Fig. 5) these values with respect to theadaptive
thresholding. Graphs in Fig. 5 evidence how our algorithm
works very well, compensating the illumination changes due
to auto-iris in all the sequences.

Figs. 6-9 show some snapshots of the segmentation results,
where white pixels correspond to foreground points. It is
noticeable that the segmentation is significantly improved.

Eventually, since auto-iris does not last many frames,



TABLE I

TIME PERFORMANCE PER FRAME.

Video 1 Video 2 Video 3 Video 4 Average
Normal bkg diff. 3.97 msec 3.80 msec 3.84 msec 3.72 msec 3,83 msec
adaptive thresh. 3.92 msec 3.88 msec 3.64 msec 3.72 msec 3.79 msec
proposed appr. 4.20 msec 4.90 msec 6.76 msec 4.02 msec 4.97 msec

(a) Without auto-iris
compensation

(b) With adaptive
thresholding

(c) With proposed ap-
proach

Fig. 6. Segmentation results on Video 1

(a) Without auto-iris
compensation

(b) With adaptive
thresholding

(c) With proposed ap-
proach

Fig. 7. Segmentation results on Video 2

(a) Without auto-iris
compensation

(b) With adaptive
thresholding

(c) With proposed ap-
proach

Fig. 8. Segmentation results on Video 3

(a) Without auto-iris
compensation

(b) With adaptive
thresholding

(c) With proposed ap-
proach

Fig. 9. Segmentation results on Video 4

the computational overhead introduced by our algorithm
with respect to adaptive thresholding or normal background
differencing is negligible, as evidenced in Table I where the
figures are related to the background differencing task only
per frame (on a P4 processor at 3.4 GHz and 1 GB of RAM).

VI. CONCLUSIONS

In this paper, we present a new two-step approach to
auto-iris compensation. The method, although empirical, has
proved to be very effective in many different situations, such

as outdoor and tunnel scenes. More sophisticated approaches
have been investigated, but the limited resources of the DSP

board on which our system is (at the end) implemented make
these approaches unsuitable. In fact, we also demonstrate that
the proposed two-step approach is computationally inexpen-
sive.
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