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CHAPTER

Statistical Pattern
Recognition for Multi-Camera 1 6
Detection, Tracking, and

Trajectory Analysis

Simone Calderara, Rita Cucchiara, Roberte Vezzani
Dipartimento di Ingegneria dell Informazione, University of Modena and Reggio
Emiitia, Modena, Italy

Andrea Prati
Dipartimento di Scienze e Metodi dell’lngegneria, University
of Modena and Reggic Emilia, Emilia, aly

Abstract

This chapter will address most aspects of modern video surveillance with reference
to research conducted at University of Modena and Reggio Emilia. In particular,
four blocks of an almost standard surveillance framework will be analyzed: low-
level foreground segmentation, single-camera person tracking, consistent labeling,
and high-level behavior analysis. The foreground segmentation is performed by a
background subtraction algorithm enhanced with pixel-based shadow detection;
appearance-based tracking with specific occlusion detection is employed to follow
moving objects in a single camera view. Thus, multi-camera consistent labeling
detects correspondences among different views of the same object. Finally, a
trajectory shape analysis for path classification is proposed.

Keywords: probabilistic tracking, consistent labeling, shape trajectory analysis,
distributed video surveillance

16.1 INTRODUCTION

Current video surveillance systems are moving toward new functionalities to become
smarter and more accurate. Specifically, path analysis and action recognition in human
surveillance are two very active arcas of research in the scientific commmunity. Moreover,
with the high proliferation of cameras installed in public places has come a surge of
algorithms for handling distributed multi-camera (possibly multi-sensor) systems.
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FIGURE 16.1
MPEG Imagelab video surveillance sofution.

This chapter will summarize the work done at Imagelab,! University of Modena and
Reggio Emilia, in the last ten years of research in video surveillance. Figure 16.1 shows the
moedular architecture we developed. The architecture exploits several libraries (collected
in the Imagelab library) for video surveillance, written in C++, that provide direct inter-
operability with OpenCV (state-of-the-art computer vision open source tools). Frons the
bottom up, the lowest level is the interface with sensors (the top of Figure 16.1). Tradition-
atly video surveillance employs fixed cameras and provides motion detection by means of
background suppression. Accordingly, we defined the Statistical and Knowledge-Based
Object detector algorithm (SAKBOT) [1], which is very robust in many different con-
ditions (sce Section 16.2 for details). Tracking with a sophisticated Appearance-Driven
Tracking Module with Occlusion Classification (Ad Hoc) [2] has been adopted in many
applications of vehicle and person tracking by single cameras (see Section 16.3).

Recent advances in security call for coverage of large monitored areas, requiring
multiple cameras. In cases of cameras with partially overlapped fields of view (FOVs)
We propose a new statistical and geometrical approach to solve the consistent labeling
problem. That is, humans (or objects) detected by a camera module should maintain their
identitics if acquired by other camera modules, even in cases of overlaps, partial views,
multiple subjects passing the edges of the FOVs, and uncertainty. An automatic learning
phase to reconstruct the homography of the plane and the epipolar lines is required to
perform this task. The approach, called HECOL [3] (Homography and Epipolar-Based

! Yor further information: Itip.sfimagelabing unimore.il,
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16.2 Background Modeling

Consistent Labeling), has been ¢
Reggio Emilia.

Behavior analysis is carried out starting with the person trajectory. Learning the nor-
mat path of subjects, we can infer abnormal behaviors by means of detecting unusual
trajectories that do not fit clusters of preanalyzed data, The challenge is a reliable measure
of shape ajectory similarity in a large space covered-by multiple cameras. In this Seld
we recently proposed a new effective descriptor of trajectory based on circular statistics
using a mixture of von Mises distributions [4].

The Imagelab architecture is enriched by a set of user-level modules, First, it includes
& Web-based video and anaotation repository, ViSOR (51,2 which also provides a video
surveillance ontology. Thus, MOQSES {Mobhile Streaming for Surveillance) is a video
streaming server devoted to surveillance systems.

mployed for real-time monitoring of public parks in

16.2 BACKGROUND MODELING

The first important processing step of an automatic surveillance system is the extraction of
objects of interest, In particular, when cameras are installed in fixed positions this can be
achieved by calculating the difference between the input frame and a mode] of the static
content of the monitored scene—that is, the background model. Background modeling is
a complex task in real-world applications; many difficulties arise from environmental and
lighting conditions, micro-movement (e.g., waving trees), or illumination ch
background model must aiso be constantly
intrinsic changes in the scene itself, such
natural artifacts.

anges. The
updated during the day because of natural
a8 clouds covering the sun, rain, and other

The adopted motion detection algorithm is specificatly designed to ensure robust and
reliable background estimation even in complex outdoor scenarios. It is a modifi ation of
the SAKBOT system [1] that increases robustness in outdoo

runcontrolled environments.
The SAKBOT background model js 4 temporal median modet with a selective knowledge-

based update stage. Suitable modifications to background initialization, motion detection,
and object vatidation have been developed. The initial background mode] at time t, BGy,
Is initialized by subdividing the input image 7 into 16X16 pixel-sized blocks. For each
block, a single difference over time, with input frame 1, , is performed and the number of
still pixelsis counted as the block's weight. The background is then sclectively updated by
including all blocks composed of more than 953 percent still Pixels, and the initialization
process halts when the whole background image BG, is filled with “stable” biocks.

After the bootstrapping stage, the background model is updated using a selective
temporal median filter. A fixed Z-sized circular buffer is used to collect values of cach
pixel over time. In addition to the & values, the current background model BG4, 7) is
sampled and added to the buffer to account for the last reliable background information
available. These s =k + 1 values are then ordered according to their gray-level intensity,
and the median value is used as an estimate for the current background model,

P P . i .
* For further information: btp o openvisororg.
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The difference between the current image 7, and the background model BGy is
computed and then binarized using two different local and pixelvarying thresholds: a
low-threshold Tiew to filter out the noisy pixels extracted because of small intensity vari-
ations; and a high-threshold Ty, to identify the pixels where large intensity variations
oceur. These two thresholds are adapted to the current values in the buffer:

71|<>\\r(7',_f) = A (b EEANY A b i1 ,,',)
) ) (16.1)

Toagn .0 =4 (Bt = izt )

where by, is the value at position p inside the ordered circular buffer b of pixel (4, 7), and
A, I, and h are fixed scalar vahues. We experimentally setA =7, 1 =2, and i = 4 for a buffer
of 72 = 9 values. The final binarized motion mask A, is obtained as & composition of the
two binarized motion masks computed respectively using the low and high thresholds:
A pixel is marked as foreground in M, if it is present in the low-threshold binarized mask
and it is spatially connected to at least one pixel present in the high-threshold binarized
mask.

Finally, the list MVO, of moving objects at time £ is exiracted from M, by grouping
connected pixels. Objects are then validated, jointly using color, shape, and gradient
information to remove artifacts and objects caused by smail hackground variations, and
invalid objects are directly injected into the background model (see Calderara et al. {6}
for further details).

An object-level validation step is performed 10 remaove all moving objects generated
by small motion in the background (e.g., waving trees). This validation accounts for joint
contributions coming from the objects’ color and gradient informatiorn.

The gradient is computed with respect to both spatial and temporal coordinates of
the image I

(i, f) , ) . )

L = =L E LD

dlx, 1)

ar s (16.2)

af (i, f)

Ay, 1)

In the case of stationary points, the past image samples I 5y can be approximated

with the background model BGy; then the gradient module G, is computed as the square
sum of all components.

= Ly -1V = LT

) N
LD = g1y =1t +1,

FTo Ge(i =1, )= I + 1. /)

IR,

D gt =1 =1 j+1) 163
(. £)

2

— { (F : q = ____—--—v(’jl', (i"i) 2 .(;J_If.(?‘,:i‘l
6= Lt p et \[ LD |

This joint spatio-temporal gradient module is quite robust against smail motions in
the background, mainly thanks to the use of temporal partial derivatives. Moreover, the
joint spatio-temporal derivative makes the gradient computation more informative, since
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3Gy s italso detects nonzero gradient modules even in the inner parts of the object as well as
lds: a on the boundaries as performed by common techniques.
¥ vari- Given the list of moving objects MVO,, the gradient G, for each pixel (7,7} of a
ations moving object MVQy, and the gradient (in the spatial domain) of the background GBG,
are compared in order to evaluate their mutual coherence. This gradient coberence G,
is evaluated overa & X k neighborhood as the blockwise minimum of absolute differences
16.1) between the current gradient values G and the background gradient values GBG, in the
considered block,
S To ensure a more reliable coherence vatue even when the gradient module is close
), and Lo zeto, we combine the gradient coherence with a color coberence contribution C¢,
yuffer R computed blockwise as the minimum of the Euclidean norm in the RGB space between
of the the current image pixel color /, (7, J) and the background model values in the considered
holds: = block centered at (7, /). The overall validation score is the normalized sum of the per
mask f pixel validation score, obtained by multiplying the two coherence measures. Objects
rized E are validated by thresholding the overall coherence, and pixels belonging to discarded
: objects are labeled as part of the background.
ping _ since shadows can negatively affect both background model accuracy and object
dient o - detection, they are removed based on chromatic properties in the HSV color space [7].
; and : . The blobs classified as shadow are not tracked as the validated objects. They are not
1. 16] : considered as background either and also they are not used for the background update.
] One of the problems in selective background updating is the possible creation of
rated - ghosts. The approach used to detect and remove ghosts is similar to that used for back-
joint ground initialization, but at a regional rather than a pixel level. Alt the validated objects
_ are used to build an image called 4, (. f) that accounts for the number of times a pixel is
es of detected as unchanged by single difference.
: A valid object MVO! is classified as a ghost if
> [ Al f)
Five ATVO
16.2) v ‘m;’h > Tahost (16.4)
!
_ X where Tyhos is the threshold of the percentage of points of the M VO;" unchanged for a
ated ' : sufficient time, and N} is the area in pixels of M VO,
uare

16.3 SINGLE-CAMERA PERSON TRACKING

6.3) ' : After being identified, moving objects should be tracked over time. To this end an
appearance-based tracking algorithm is used since it is particularly suitable to video
surveillance applications.

Appearance-based tracking is a well-established paradigm with which to predict,
match, and ensure temporal coherence of detected deformable objects in video streams.
These techniques are very often adopted as a valid alternative to approaches based on 3D
: reconstruction and modelf matching because they compute the visual appearance of the
the _ i objects in the image plane only, without the need of defining camera, world, and object
nee ; ' models. Especially in human motion analysis, the exploitation of appearance models or

s in
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templates is straightforward. Templates enable the knowledge of not only the Jocation
and speed of visible subjects but also their visual aspect, their sithouette, or their body
shape at cach frame. Appearance-driven tracking is often employed in video surveiliance,
particulasly of humans, and in action analysis and behavior monitoring to obtain precise
information about visible and nonvisible body aspects at each instant {8~10].

This section provides a formal definition of our approach, called Appearance-Briven
Tracking with Qcclusion Classification (Ad Hoc). The tfracking problem is formulated in
a probabilistic Bayesian model, taking into account both motion and appearance status.
The probabilistic estimation is redefined at each frame and optimized as a4 MAP (max-
imum a posteriord) problem so that a single solution for eacl frame is provided in a
deterministic way. We do not track each object separately; rathes, the whole object set is
considered in a two-step process. A first top-down step provides an estimate of the best
positions of all objects, predicting their positions and optimizing them in a MAP algorithm
according to pixel appearance and a specifically defined probability of nonocclusion.
A second bottom-up step is discriminative, since cach observation point is associated
with the most probable object. Thus, the appearance model of each object point is selec-
tively updated at the pixel level in the visible part, ensuring high reactivity in shape
changes.

This section also describes a formal model of nonvisible regions thatare nonnegligible
parts of the appearance model unobservable in the current frame, where the pixel-to-
object association is not feasible, Nonvisible regions are classificd depending on the
possible cause: dynamic occlusions, scene occlusions, and appavent ceclusions (1.e.,
only shape variations).

16.3.1 The Tracking Algorithm
Even if Ad Hoc tracking works at a pixel level, the central element in the system is the
object O, which is described by its state vector O = {{oy, ..., ox}, ¢, e I}, where {o;}
is the set of ¥ points that constitute the object O; ¢ and € are respectively the object’s
position with respect to the image coordinate system and the velocity of the centroid;
and 11 is the probability of O being the foremost object—rthat is, the probabifity of
nonocclusion. Each point o; of the object is characterized by its positdon (x, ) with
respect to the object centroid, by its color (R, G, B), and by its likelihood « of belonging
to the object.

'The scene at each frame ¢ is described by a set of objects O = {0y, ..., Oy}, which
we assume are generating the foreground image F/={(fy, ..., f;}—that is, the points
of MOV; extracted by any segmentation technique. Each point f; of the foreground is
characterized by its position (x, 1) with respect to the image coordinate system and by
its color (R, G, B).'The tracking aim is to estimate the set of objects O abserved in
the scene at frame £+ 1, based on the foregrounds so far extracted. In a probabilistic
framework, this is obtained by maximizing the probabiiity 2{O"TH#FY*1) where the
notation FOYL=p0 R T perform this MAP estimation, we assume a first-order
Markovian model, meaning that P(OQ M FO 1y = p(O! Wi+ G, Moreover, by using
Baves' theorem, it is possible to write

])(014'1”;14'1! OI) “I)(]gf-i-]10.’-}-1)1)(0!4'11(9[)1)(0!) (16‘5)
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Optimizing equation 16.5 in an analytic way is not possible, as this requires testing
all possible object sets by changing their positions, appearances, and probabilitics of
nonocclusion. As this is definitely not feasible, we break the optimization process into two
steps: locally optimizing the position and then updating appearance and the probability
of nonocclusion,

Position Optimization

The first task of the algorithm is the optimization of the centroid position for all objects. In
cquation 16.5 the term P(O') may be set to 1, since we keep only the best solution from
the previous frame. The term P(O"TUGNY the motion model, is provided by a circular
search area of radius r around the estimated position ¢ of every object. £(¢' 1 O = :13
mside the search area and equals @ outside.

To measure the likelihood of a foreground being generated by an object, we define a
relation among the corresponding points of F and O with a function go F > 0, and its
domain Fo, which is the set of foreground points matching the object’s points. We may
then define 77 = UOGO Fo—that ~is, the set of foreground points that match at least one
object. In the same way we call O the co-domain of the function go, which inciudes the
points of O that have 2 correspondence in F. (See Figure 16.2(2).) Since the objects can be
overlapped, a foreground point / can be in correspondence with more than one object O,
and thus we can define the set O(f) as O(f) = {00 rery b The term PO g
given by the likeliiood of observing the forcground image given the objects positioning,
which can be written as

PETNOTH =TT ST P{flgot) 110 (16.6)

fef Loedon

obtained by adding, for each foreground pixet £, the probability of being generated by
the corresponding point o =go(f) of every matching object O ¢ Q). multiplied by its
nonocclusion probability, [,

&

F= 0,0 0 U Oy
(L)

FIGURE 16.2

(a) Domain and co-domain of the function &o, which transforms the coordinates of a foreground
pixel x € F into the corresponding object coordinates. (b) Visible and nonvisible parts of an object.
F is the foreground part not covered by an object.
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The conditional probability of a foreground pixel £, given an object point o, is modeled
by a Gaussian distribution, centered on the RGB value of the object point:

P(flo) = e VAT o) (16.7)

(2m)3 22|42

where () and a(9) give the RGB color vector and the o component of the point, respec-
tively, and E:(rzl;, is the covariance matrix in which the three color channels are
assumed to be uncorrefated and with fixed variance o, The choice of sigma is related to
the amount of noise in the camera. For our experiments we chose o = 20.

From a computational point of view, the estimation of the best objects’ alignment
requires at most {2y evaluations. It is reasonable to assume that the contribution
of the foremost objects in equation 16.6 is predominant, so we locally optimize the
function by considering only the foremost object for every point. The algorithm proceeds
as follows:

1. A list of objects sorted by probability of nonocclusion (assuming that this is
inversely proportional to the depth ordering) is createdl.

2. The first object O is extracted from the list and its position ¢ is estimated by
maximizing the probability:

PO ] P(7lgor) (16.8)
f@f‘"{)
3. After finding the best ¢, the matched foreground points are removed and the
foreground set F considered in the next step is updated as F = F\Fy.
4. The object O is removed from the list as well, and the process continues from
step 2 until the object list is empty.

The algorithm may fail for objects that are nearly totally occluded, since a few pixels
can force a strong change in the object center positioning. For this reason we introduce
a confidence measure for the center estimation, to account for such a situation:

3 @(0)
Conf(0) = & (16.9)
3 alo)
ce0
If during the tracking the confidence drops under a threshold (set to 0.5 in our experi-
ments), the optimized position is not considered reliable and thus only the prediction is
used.

Pixel-to-Track Assignment

This is the sccond phase of the optimization of equation 18.5. In this top-down approach,
once all tracks have been aligned, we adapt the remaining parts of each object state. Even
in this case we adopt a suboptimal optimization. The first assumption is that each fore-
ground pixel belongs to only one object. Thus, we perform a bottom-up discriminative
pixelto-object assignment, finding the maximum of the following probability for each
point f € F:

PO 1= P(flgo(N) - Plgo () = P([flgo(/)} - algo(f)) (16.10)
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16.3 Single-Camera Person Tracking

where P(flgn(£)} is the same as in cquation 16.7, and we use the symbeol — to indi-
cate that the foreground pixel f is generated by the object O. Directly from the above
assignment rule, we can divide the ser of object points into visible Oy and nonvisible
Onrv = O = Oy points:

Ov=10e0|3f :gaj(o) AArg max (Pf'O,- —;f}) =() (16.11)
Gre?
In other words, the subset Oy is composed of all points of O that correspond to
a foreground pixel and that have won the pixel assignment. (See Figure 16.2(b).) The
alpha value of each object point is then updated using an exponential formulation:

al@™ =X aiey + (1 =A)8(0. O) (16.12)

where 8(., 1) is the membership function. Equation 16.12 includes two terms: one pro-
portional to a parameter A [0, 1] that corresponds to P 71 10') and reduces the alpha
value at each time step; and one proportional to 1 — A that increases the a value for the
matching visible points P 0). Similarly, we update the RGB color of each object point:

(“)f‘!'l :)\'5'+(1 ..k.A)_f‘,S{O‘ ()‘,) (16.13)

The last step in updating the object state concerns the nonocctusion probability 17, We
first define the probability Po’* ! that on object O; ocelwdes another object Oy

G B < Bocer
T e f —
Po(0;. ()J,')H' L NG| !Bf_}’)PO{]- ay =10 (1614)

0y

{1 —,8,]-}1’05,,. "ﬁ"‘,B..f','e;;;; ay # 0

where

i == “ OV',' g O:\"V.j

86,1000 N g5 O

701

B:jf = -M;E,-m_ (16. 15)

dy i the number of points shared between O; and Oy and assigned to Oy; Bip is the
percentage of the arca shared between O; and O; assigned to Oy or O;, which is less than
or equat 1o 1 since some points can be shared among more than two objects,

The value 8 is used as an update coefficient, allowing a faster update when the
number of overlapping pixels is high. Conversely, when the number of those pixels is
too low Qunder a threshold Gocel), We reset the probability value o zero, The probability
of nonocelusion for each object can be computed as

0N =1~ max Po(0;, 0;) 1 (16.16)
()jE@ )

With the probabilistic framework previously described, we can “assign and track”
all foreground pixels belonging to at least one object. However, the foreground image
contains points f(€F ~ F), with no corresponding object because of shape changes
or the entrance into the scene of new objects. We assume that a blob of unmatched

B m——
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foreground points is due to a shape change if it is connected (or close to) an object, and
in such 2 situation the considercd points are added to the nearest object; otherwisce,
new object is created. In both cases the a value of each new point is initialized 10 a
predefined constant value (e.g., 0.4). Obviously, we cannot distinguish in this manner
a4 new object entering the scene occluded by or connected to a visibie object. In such a
situation the entire group of connected objects will be tracked as a single entity.

16.3.2 Occlusion Detection and Classification
As a result of occlusions or shape changes, some points of an object may have no corre-
spondence with the foreground J7. Unfortunately, shape changes and occlusions require
two different and conflicting solutions. To keep a memory of an object’s shape even
during an occlusion, the object model must be siowly updated; at the same time fast
updating can better handle shape changes. To this end, the adaptive update function is
enriched with knowledge of occlusion regions. In particular, if a point is detected as
occluded, we freeze its color and o value instead of using equations 16.12 and 16.13,
The introduction of higher-level reasoning is necessary to discriminate between occlu-
sions and shape changes . The set of nonvisible points Oy 18 the candidate set for occluded
regions. After a labeling step over O, a set of nonvisible regions (of connected points)
is created; sparse points or oo small regions are pruned, aned a final set of nonvisible
regions {NVRJ} is created. Occlusions can be classified as follows:

u  Dynamic occliusions (Rpo): due to overlap by another object closer to the camera;
the pixels in this region were assigned to the other object,

m Scene occlusions (Rso): due to (still) objects included in the scene and therefore in the
background model, and thus not extracted by the foreground segmentation algorithm
but actually positioned closer to the camera,

® Apparent occlusions (Rag): not visible because of shape changes, silhouette motion,
shadows, or self-occlusions.

The presence of an occlusion can be inferred by exploiting the confidence value of
equation 16.9, decreasing it below an alerting value since in case of occlusion the object’s
shape changes considerably. The occluded points & of the object model (x € Rpoorx e
Ryo) should not be updated because we do not want 10 lose its memory. Instead, if the
confidence value decreases because of a sudden shape change (apparent occlusion), not
updating the object state creates an error. The solution is a sefective upedate according to
the region classification.

The detection of the first type of occlusion is straightforward, because we always know
the position of the objects and can easily detect when two or more of them overlap. Rpo
regions comprise the points shared between object O and object O; but not assigned to
Oy To distinguish between Ry and R0, the position and the shape of the objects in the
background can be helpful, but are not provided with our segmentation algorithm. To
discriminate between Koo and Ry, we exploit the set of background edges. This subset
of points in the background model contains all points of high color variation, among
which the edges of the objects are usually detected. In the case of Rgp we expect to find
edge points in correspondence with the boundary hetween this Ry and the visible part
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ction

bject, and of the track. From the whole set of nonvisible points O, defined in equation 16.1 1, we
I N q

erwise, a only keep those with a nonnegligible value of the probability mask in order to eliminate
lized to a noise due to motion. The remaining set of points is segmented into connected regions.
s manner

Then, for each region, the area weighted with the probability values is calculated and too
small regions are pruned. The remaining nonvisible regions (NVVR;) belonging to an object
ty. O must be discriminated as background object occlusions and ;ipparcnt occlusions.

We call B(-) the set of border points of a region. At the same time, the edges of the
background model are computed by a simple edge detector, reinforced by probability
density estimation. We could exploit a more robust segmentation technique (e.g., mean
shift [11]), to extract the border of objects in the background image; in our experiments
however, edge detection has given good results and requires much less computation.
Given the set of edge points E = {e;};—;_, in the background image, a probability den-
sity estimate for the background edges can be computed using a kernel ¢(x) and a
window h:

In such a

no corre-
1S require
1ape even
time fast
unction is
tected as

3

116.13. ol (X —el

en occlu- Dn (x| E) = P Z h—z"p( b ) (16.17)
occluded =t

=d points) The probability density for nonedges p(x|E) can be assumed to be uniform over the same

1onvisible region. We can then naively compute the a posteriori probability of a pixel x being an
edge point:

C camerd;

5 .
P(E|x)= gels) z (16.18)
P{x|F)+P(x|:E8)
fore in the
algorithm where we assume equal a priori probability.
We can now compute the average a posteriori probability of the set of points 0 € BOyy
e motion, to be generated by the background edges. In particular, we are interested in the subset

B(Ozy) = B(Ony)NB(Oy), which is the part of the border of Ony connected to the
visible part Oy . The probability estimate allows a noisy match between BOyy and the
edge points. If this average probability is high enough, meaning that the contour of
the occluded region has a good match with the edges, we can infer that another object
is hiding a part of the current object, and thus label the region Rgp; otherwise, R q.
In other words, if the visible and the nonvisible parts of an object are separated by an
edge, then plausibly we are facing an occlusion between a still object in the scene and
an observed moving object. Otherwise, the shape change is more reasonable because
there are no more visible points.

e value of
1¢ object’s
Rpoorx €
ead, if the
1sion), not
cording to

vays know Figure 16.3 shows a person occluded in large part by a stack of boxes that are with-
>rlap. Rpo in the background image. Two parts of his body are not segmented and two candidate
ssigned to occlusion regions are generated (Figure 16.3(¢)). One of them is a shadow included in

ects in the
orithm. To
his subset

the object model but now gone. In Figure 16.3(g) the borders of the NVRs are shown,
with pixels that match well with the edges highlighted. In an actual occlusion due to
a background object, the percentage of points that match the set of bounding points
1, 4among is high; thus the region is classified as Rso. Conversely, for the apparent occlusion

ect to find (the shadow), we have no matching pixels and consequently this region is classified
isible part as Rao.
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{a) Current frame {c) Foreground (d) Tracked object staie

‘ Overlap with
rnmrem—i—ed e DACkgrouned
edges

{e) Non visible regions (f) Background edges (g) R, und R, contours
Ryand R,

FIGURE 16.3

Example of regions classification; Ry is classified as an Ry region since there are points that match
well with the edge pixels of the background. Instead, R, is classified as an R region.

16.4 BAYESIAN-COMPETITIVE CONSISTENT LABELING

In large ourdoor environments, multi-camera systems are required. Distributed video
surveillance systems exploit multiple video streams to enhance observation. Hence, the
problem of tracking is extended from a single camera to multiple cameras; thus a sub-
ject’s shape and status must be consistent not only in 2 single view but also in space
(i.e., observed by multiple views). This problem is known as consistent labeling, since
identification labels must be consistent in time and space.

if the cameras’ FOVs overlap, consistent labeling can exploit geometry-based com-
puter vision. This can be done with precise system calibration, using 3B reconstruction
to solve any ambiguity. However, this is not often feasible, particularly if the cameras are
preinstalled and intrinsic and extrinsic parameters are unavailable, Thus, partial calibra-
tion or self-calibration can be adopted to extract only some of the geometrical constraints
(e.g., the ground plane homography).
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16.4 Bayesian-Competitive Consistent Labeling

The consistent labeling problem, on camera networks with partially overlapping
FOVs, is solved with a geometric approach that exploits the FOV relations and con-
straints to impose identity consistency. We call our approachk HECOL (homography and
epipolar-based consistent labeling). Specifically, when cameras partially overtap, the
shared portion of the scene is analyzed and identities are matched geometrically, After
an initial unsupervised and automatic training phase thé overlapping regions among
FOVs, ground plane homographies, and the epipole location for pairwise overlap-
ping cameras are computed. The consistent labeling problem is then solved online
whenever a new object 7 appears in the FOV of a given camera C! (the superscript
indicates the camera ID). The multi-camera system must check whether 7 corresponds
to a completely new object or to one already present in the FOV of other cameras.
Moreover, it should deal with groups and identify the objects composing them. The
approach described here has the advantage of coping with labeling errors and partial
occlusions whenever the involved objects are present in at least one overlapped view
Using the vertical objects’ inertial axis as a discriminant feature can also help to disam-
biguate the group detected as a single blob, exploiting the information in overlapped
views,

When many objects are present in the scene and many cameras are involved, an
exhaustive search may be computationally expensive. Thus, the subset of K potential
matching objects satisfving the camera topology constraints is efficiently extracted by
means of a graph model (called the camera transition grapk). These K objects are
combined to form the hypothesis space I that contains all (2% ~ 1) possible matching
hypotheses, including both single objects and groups. A MAP estimator is used to find
the most probable hypothesis y; eI

i=arg max (plyel ) =arg max (pir] Vi) PAve}) (16.19)

To evaluate the maximum posterior, the prior of each hypothesis -y, and the likelihood of
the new object 7 given the hypothesis must be computed, The prior of a given hypothesis
Ye 18 not computed by means of a specific pdf, but is heuristically evaluated by assigning a
value proportional to a score oy, The score oy, accounts for the distance between objects
caleutated after homographic warping. A hypothesis consisting of a single object then
gains higher prior if the warped lower support point (i.e., the point of the object that
contacts the ground plane) Ip is far enough from the other objects’ support points. On
the other hand, a hypothesis consisting of two or more objects (e, a possible group)
gains higher prior if the objects that compose it are close to each other after the warping
and, at the same time, the whole group is far from other objects.

Letus suppose that a new object 7 appears on camera ¢!, The Ip of each of K objects i
C? s warped to the image planc of €1, Likelihood is then computed by testing the fitness
of each hypotheses against current evidence. The main goal is to distinguish hetween
single hypotheses, group hypotheses, and possible segmentation errors exploiting only
geometrical properties in order to avoid uncertainties due to color variation, and adopting
the vertical axis of the object as an invariant feature.

The axis of the object T can be warped correctly only with the homography mattix
and knowledge of the epipolar constraints among cameras. To obtain the correct axis
inclination, the vertical vanishing point (computed by a robust technique as described
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FIGURE 16.4

Example of exploiting the vanishing noint and epipotar geometry to wai D the axis of the object 7 to
the image plane of camera ¢!

in Brauer-Burchardt and Voss [12]) is then used as shown in Figure 16.4. The lower
Support point Ip of 7 is projected on camera C? using the homography marrix. The
cotresponding point on the image planc of camera €2 is denoted as ay = Hlp, where i
is the homography matrix from ¢! to C*. The warped axis lies on a straight line passing
through vp? and a, (Figure 16.4¢d)). The ending point of the warped axis is computed
using the upper support point up—that s, the middle point of the upper side of the
object’s bounding hox. Since this point does not lie on the ground plane, its projection
onto the image of camera €2 does not correspond o the actual upper support point;
however, the projected point lics on the epipolar line. Consequently, the axis’s ending
point az is obtained as the intersection between the epipolar line {e? Hup) and line
{vp*, Hlp) passing through the axis.

Based on geometrical constraints, the warped axis {ay, a2} of 7 in the image plane
of C? is unequivocally identified but jes computation is not error free, To improve its
robustness to computation Crears, we also account for the dual process that can be
performed for each of the K potential matching objects: The axis of the object in €2 is
warped on the segment {ay, az} on camera ¢,

The measure of axis correspondence is not merely the distance between axes (ap, ag)
and {Ip, up); rather, it is defined as the number of matching pixels between the warped
axis and the foreground blob of the target object—which makes it easier to define a
normalized value for quantifying the matching. Accordingly, the fitness measure Pyt
from object 7, in generic camera ¢ o object 7, in generic camera ¢7 is defined as
the number of pixels resulting from the intersection between the warped axis and the
foreground hlob of 7, normalized by the length (in pixels) of the warped axis itself, The
reversed fitness measure Pryes 7z, 18 COmputed similarty by reversing the warping order,
In the ideal case of corresponidence between To and 74, @, ., ™ = Pry-sr, = 1 However,
in the case of errors in the Ip and up computations, the warped axis can fall partially
outside the foreground blob, lowering the fitness measure,

In the likelihood definition, we refer to Jorward contribution when fitness is caloy-
lated from the image plane in which the new object appears (camera ¢ N to the image
plane of the considered hypothesis (camera ¢ 3. Thus, generalizing for hypotheses con-
taining more than one object (group hypotheses), forward axis correspondence can he
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16.4 Bayesian-Competitive Consistent Labeling

evaluated by computing the fitness of the new object 7 with

all objects composing the
given hypothesis v, for camera G

Z Pr— T

TmEYE
_ﬁ’f‘()rw;u‘d(ﬂ')’k) = [Y; S (16.20)
I

ability of the forward fitness measure of the

Sr measures the maximum range of vari
objects inside the given hypothesis:

Sr = max (¢;,, ) — min (prsz,) (16.21)

Tm€Ye €Y

The use of the normalizing factor K (i.e., the number of potential matching objects

on €% weighs each hypothesis according to the presence or absence of objects in the
whole scene.

Backward contribution is computed simil

arly from the hypotheses space to the
observed object:

Z qp'i'm“ T

TmEYe
Dbackward (T =— 16.22
JPbackw ard ( [ve) ks, ( )
where S}, is defined as
Sp= max (¢, _,.)— min (@r,—7) (16.23)
TmEYe Tn€Ye

Finally, likelihood is defined as the maximum value between forward and backward
contribution. The use of the maximum value ensures use of the contribution where the

extraction of support points is generally more accurate and suitable for the matching,

The effectiveness of the double backward/forward contribution is evident in the full
characterization of groups. The forw

ard contribution helps solve situations when a group
of objects is already inside the scene while its components appcarone at a time in another
camera. The backward component is useful when two people appearing in a new camera

are detected as a single blob. The group disambiguation can be solved by exploiting
the fact that in the other camera the two objects are detected as separate. Backward
contribution is also useful for correcting segmentation errors, in which a person has
been crroneously extracted by the object detection system as two separate objects, but
a full view of the person exists from the past in an overlapped camera.

When more than two cameras overlap simultaneously it is possible to take into account
more information than in the pairwise case. To account for this situation our approach is
suitably modified by an additional step that selects the best assignment from all possible
hypotheses coming from each camera. In detail, when a detection event occurs on ¢!,
for each camera ¢/ overlapped with C! the best local assignment hypothesis is chosen
using the MAP framework. A second MAP estimator detects the most probable among
these hypotheses. In complex scenes more hypotheses can have similar a posteriori
probability but a particular view may exist where the hypothesis assignment is easier,
The purpose of the second MAP stage is to choose this view, which can be casily done
using the previously computed posteriors and Bayes’ rule:

D ((,3" | 'r) “p (T | Cj) = mai(‘j)(y,;. | 7) (16.24)
YrRE

- OO ——— I
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The camera posterior is evaluated for each camera ¢/ that overlaps with camera C Ly
assuming that all overlapped camera views are equally probable. Eventually, the label is
assigned to the new object according to the winning hypothesis on the winning camera.
If the chosen hypothesis identifies a group, the labels of all objects composing the group
are assigned as identifiers.

16.5 TRAJECTORY SHAPE ANALYSIS FOR ABNORMAL
PATH DETECTION

The previous steps of our system had the main objective of keeping a person tracked in a
wide area, by segmenting and tracking him in each single static camera and then exploit-
ing consistent labeling to keep him tracked among different camera views. This global
label assignment is the fundamental step for subsequent, higher-level tasks. For instance,
the information provided by the multi-camera tracking system can be further analyzed
to detect anomalous person paths in the scenc. This task is accomplished by learning
“pormality” modeling path recurrence statistically as a sequence of angles modeled with
a mixture of von Mises probability density functions.

In fact, after the label disambiguation process, tracking output can be exploited
for further high-level reasoning on behavior. In particular, paths can be analyzed to
detect anomalous events in the system. They are extracted directly from the multi-camera
tracking system and homographically projected onto the ground plane. Each path is
modeled as a sequence of directions computed as the angle between two consecutive
points. From this approximation of the direction, a running average filter of fixed size
is applied to smooth the segmentation errors and discretization effects on the direction
computation.

Using a constant frame rate, we model the single trajectory Tj as a sequence of n;
directions 6, defined in [0, 27):

II}:{(‘})}J\BZ‘]....,B”;J} (16.25)

Circular or directional statistics [13] is a useful framework for analysis. We adopt
the von Mises distribution, a special case of the von Mises-Fisher distribution [14, 15],
also known as the circular normal or the circular Gaussian. It is particularly useful
for statistical inference of angular data. When the variable is univariate, the probability
density function (pdf) results are

1
V(0100 m) = ———e™ cos(f—0q) 16.26
(0160, m) 2ol (m)é ( )

where Iy is the modified zero-order Bessel function of the first kind, defined as

27

1 .
Iy (m)=— fe’”“’sndﬂ (16.27)
2
0

representing the normalization factor. The distribution is periodic so that p(0 + M27) =
p(0) for all 6 and any integer M.
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o G, Von Mises distribution is thus an ideal pdf to describe a trajectory 7;. However, in
abel is the general case a trajectory is composed of more than a single main direction; having
umera. several main directions, it should be represented by a multi-modal pdf. Thus we propose
group the use of a mixture of von Mises (MovM) distributions:
K
pO)=> "V (8180, mz) * (16.28)
k=1

As is well known, the EM algorithm is a powerful tool for finding maximum likelihood
estimates of the mixture parameters, given that the mixture model depends on unob-
served latent variables (defining the “responsibilities” of a given sample with respect to a

edina given component of the mixture).
xploit- The EM algorithm allows the computation of parameters for the K MovM components.
global A full derivation of this process can be found in Prati et al. [4].
stance, If the trajectory 7; contains less than K main directions, some components have
alyzed similar parameters. Each direction 8 is encoded with a symbol §; J using a MAP approach,
arning that, assuming uniform priors, can be written as
d with
Sij = argmax p (6o, m,|0; ;) = arg max p (01,4160, m,) (16.29)
ploited r=1,...K r=1,..K
zed to where 6, and m2, are the parameters of the rth components of the MovM. Each trajectory
camera T; in the training set is encoded with a sequence of symbols T, ={81,, Ny S,,j‘_,»}‘
Pf"th. is To cluster or classify similar trajectories, a similarity measure Q(7;, T) is needed.
il Acquisition noise, uncertainty, and spatial/temporal shifts make exact matching between
ed slze trajectories unsuitable for computing similarity. From bioinformatics we can borrow a
hEckah method for comparing sequences in order to find the best inexact matching between
them, accounting for gaps. Among the many techniques, we used global alignment [16),
€ of which is preferable to local alignment because it preserves both global and local shape
characteristics. Global alignment of two sequences § and 7' is obtained by first inserting
16.25) spaces either into or at the ends of § and 7" so that the length of the sequences is the
same, and then placing the two resulting sequences one above the other so that every
> adopt symbol or space in one of the sequences is matched to a unique symbol in the other.
14, 15], Unfortunately, this algorithm is onerous in terms of computational complexity if
- useful the sequences are long. For this reason, dynamic programming is used to reduce
bability computational time to O(#; +n;), where 1; and n; are the lengths of the two sequences.
This is achieved using a tabular representation of 1y rows and 72; columns. Each ele-
ment (a, b) of the table contains the alignment score of the symbol S, ; of sequence T
(16.26)

with the symbol §j ; of sequence TJ. This inexact matching is very useful for symbolic
string recognition but it has not been used for trajectory data since it can be affected by
measurement noise. Our proposal overcomes this problem because each symbol corre-
sponds to a von Mises distribution. Thus, the score between symbols can be measured
(16.27) statistically as a function of the dist.zmcc between the correspon.ding c;listribtllt.ions. If the

two distributions are sufficiently similar, the score should be high and positive; if they

differ significantly, the score should be negative (a penalty). Assigning zero to the gap
J[27) = penalty, the best alignment can be found by searching for the alignment that maximizes
the global score.
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Specifically, we measured the distance between distributions £ and g using the
Bliattacharyya coefficient:

e (pg)= / P g (0)ad (16.30)

1t has been demonstrated {17] that it p and ¢ are two von Mises distributions, cg{ p, g)
can he computed in closed form as follows:

i (Sais Soy) = {(V (81604, ma) . V (818015, 1))

1 \/M'z(zr + m.,% + 2y COS (()0‘,, - 90.1))
= I (16.31)
V Lo (mgd do (my) 2

where it holds that 0 =c¢g(S, . Sp ) = 1.

If we assume that two distributions are sufficiently similar if the coefficient is above
0.5, and that the score for a perfect match is +2, whereas the score (penalty) for the
perfect mismatch is —1 (these ave the typical values used in DNA sequence alignments),
then we can write the general score as follows:

2-(cp) ifep = 0.5
T (Saty Spy) = 3 2-(cp—0.5) ifep<0.5 (16.32)
¢ if 8, ; or §p; are gaps

Once the score of the best global alignment is computed (as the sum of the scores
in the best alignment path), it can be converted to a proper similarity measure
QT 7"}). This measure is used to cluster the trajectories in the training set by using
the k-medoids algorithm [18], a suitable modification of the well-known k-means algo-
rithm which has the benefit of computing, as a prototype of the cluster, the element
that minimizes the sum of intra-class distances. In other words, at each iteration the
prototype of each cluster is the member at the minimum average distance from all other
members.

However, one of the limitations of k-medoids (as well as k-means) clustering is the
choice of k. For this reason, we propose an fferative kanedoids algorithm. Let us set
i =0 and 2{0} = N,, where N, is the cardinality of the training set. At initialization, cach
trajectory is chosen as the prototype (medoid) of the corresponding cluster. Then the
following steps are performed:

Run the 2-medoids algorithim with k(7} clusters.

If there are two medoids with a similarity greater than a threshold T4, merge them
and set 27+ 1) =k{FE — 1. Increment £ and go back to step 1. If all medoids have a
two-by-two similarity lower than T'h, stop the algorithm.

In other words, the algorithm iteratively merges similar clusters until convergence. In
this way, the “optimal” number of medoids & is obtained.
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16.5.1 Trajectory Shape Classification

The described approach obtains a robust unsupervised classification of trajectories,
grouped in a variable number of similarity clusters. Clusters with fewer trajectories
represent the case of abnormal or (better) “infrequent” trajectory shapes. New trajec-
tories can be classified as normal or abnormal depending en the cardinality of the most
similar cluster. In this case, we cannot employ a classical learn-then-predict paradigm,
in which the “knowledge” learned in the training phase is never updated. However, at
the beginning an infrequent class of trajectories can be considered abnormal; if that
class is detected often, it should be considered normal, since in our scenario the model
of normality is neither a priori known nor fixed. For this reason, we employ a learn-
and-predict paradigm in which knowledge (i.e., the trajectory clusters) is continuously
updated.

Therefore, whenever a new trajectory Thew is collected, its statistical model is com-
puted and compared to the cluster medoids. Based on this comparison, it can be classified
as either belonging to an existing cluster or representing a new one (a class of trajectories
never seen before).

To learn the trajectory model we can use the same EM algorithm described in the
previous section. However, this is a very time-consuming task unsuitable for real-time
trajectory classification, even though it is acceptable for offline learning. For this reason,
we have derived an online EM algorithm for MovMs similar to what was proposed for a
mixture of Gaussians [19].

Online EM updating is based on the concept of sufficient statistics. A statistic T'(6) is
sufficient for the underlying parameter 7 if the conditional probability distribution of the
data 6, given the statistic T'(n), is independent of the parameter 7. Thanks to the Fisher-
Neyman factorization theorem [20], the likelihood function Ly (0) of 8 can be factorized
in two components, one independent by the parameters 7 and the other dependent by
them only through the sufficient statistics T(0): Ly(@)=h (0)gy(T(6)). It was shown by
Bishop [15] that in the case of distributions of the exponential family (such as Gaussian
and von Mises) the factorization theorem can be written as

PO =h ©)g () exp {477 (0)] (16.33)

Considering a von Mises distribution and a set 8 of i.i.d. angles (composing the trajectory
1), we can decompose the expression of the distribution p(8|6g, m) as follows:

”j ”_f

‘1 1
H 2l () exp {mcos (8; — 0g)} = P exp {m Z cos (6; — 6)

=1 i=1

. JIJ. Hj
1 :
= ——————exp { mcosfy Z cos 0; + m sin 6 Z sin 0; (16.34)
(2mIy(m))" — =
"
1 m cos B [.:Zl ol
e s €Xp * n
20y (m)) sin 6 2
(27l (m)) m sin O 3" sin 6,
i=1
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Thus, the sufficient statistics for a single von Mises distribution are
H’j

> cos b;

i=1

Hj

> sin6;

i=1
-

T()=

In the case of a mixture of distributions belonging to the exponential family, the online
updating of the mixture parameters can be obtained simply by updating the sufficient
statistics (s.s.) of the mixture, computed as 7y (0) = ij:l YeTp(0), where Tp(0) are the
s.s. for the kth single distribution. The updating process (having observed up to the
sample (7 — 1)), can be obtained as

TE(8) = (D) yeTi (0:) + (1 — (@) T4 (0) (16.35)
where
__|cos;
T 0= [sin 9,}

In Sato [21] there is a comprehensive discussion of the value of the updating
parameter a(7).

Once the mixture parameters have been computed, the same MAP approach
described previously gives the symbol sequence Tew- Given the set M = (M1, ..., M*)
of current medoids, F,,cw is compared with each medoid, using the similarity measure
Q, to find the most similar.

j=arg max ) (i Fiios) (16.36)
=L.., k

Defining the maximum similarity as {pax = { l(fl el T new), if this value is below a given
threshold T'hgy a new cluster should be created with Theyw and the priors (proportional
to the number of trajectories assigned to the cluster) updated:

Bl _ e B+1
M =I.,;)(M )z—
new 1’ 1\7_'_1

Vi=1,... =™ () =p (') oo~

E=R+1;N=N+1
where N is the current number of observed trajectories.

Conversely, if the new trajectory is similar enough to one of the current medoids, it
is assigned to the corresponding cluster j:

P4 (MF) N +1

Thew € cluster 7; p"v (ME) =
new Ik N+l
s s el N

VIS Ly k,i#j=p"™ (M) =p° (M) i

N=N+1
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16.6 Experimental Resuits

Morcover, if the average similarity of the new trajectory with regard to other medoids
is smaller than the average similarity of the current medoid M/ . Thew 18 a better medoid
than M/ since it increases the separability with other clusters. Consequently, Thew
becomes the new medoid of the cluster.,

Finally, to avoid the possibility of old and rare trajectories affecting our model, we
drop clusters with small priors and with no new trajectories assigned for a fixed-length
time window.

16.6 EXPERIMENTAL RESULTS

Figure 16.5 shows two examples of our system in a public park (a) and on our campus
(b). Derailed results and comparisons with state-of-the-art techniques can be found in the
corresponding papers for background suppression [1,6], single-camera tracking [2], and
consistent labeling [3, 22]. In this chapter we focus mainly on the experimental results
of trajectory shape analysis for classification and abnormality detection.

The performance evaluation was conducted on both synthetic and real data, Synthetic
data is particularly useful because we can have any amount and, the ground truth is
directly available; it doesn’t require manual annotation. Our synthetic testing data was
produced using a generator in MATLAR, which allowed us to graphically create a high
number of ground truth trajectories with noise added to both single angles and their
OCCLUTENCES,

Figure 16.6 shows examples of the trajectory classes used in our tests. In the case of
real data (see classes R1. .. R5) the trajectories’ points are extracted from the scene using
the HECOL system described in Section 16.4,

Table 16.1 summarizes the performed tests, For each, the classes of trajectories used
are depicted (with reference to Figure 16.6), with the asterisk representing an abnormal
(infrequent) class, For testing purposes we evatuated both overall classification accu-
racy (ability to assign the new trajectory to the correct cluster) and normal/abnormal

FIGURE 16.5
Example muiti-camera tracking results.
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FIGURE 16.8
Example trajectory classes.

accuracy (ability to correctly classify the trajectory as normal or abnormal depending on
the cardinality of the specific cluster).

Our system demonstrates optimal resuits both in classification and normal-abnormal
detection; the results are also optimal for real data. We compared our approach with an
HUMM-based classification system using the similarity measure proposed in Porikli and
Haga [23] (see the last two rows of Table 16.1). HMM's lower classification performance
is mainly due to the overfitting problem. When little data is available, the HMM training
stage fails to correctly estimate all parameters. Emission distribution and optimal number
of hidden states are crucial elements that must be chosen accurately when using an HMM.
This procedure can be unsupervised but it needs a large amount of data that is not always
available in real scenarios. Conversely, our approach is not greatly affected by the data
available because the number of parameters to estimate is significantly lower; thus it can
be profitably applied in many different situations. '
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FREE SURE funded by the Italian Ministry for University Research (MIUR), focuses on
the study of innovative video surveillance solutions, bringing together systems without
physical constraints (i.¢., those using PTZ, freely moving cameras, and sensors) arxl
completely respectful of privacy issues (i.e., free from legal constraings). The FREE SURF?
research activities are performed in collaboration with the University of Firenze and the
University of Palermo.

BE SAFE? is a NATO Science for Peace project that focuses on extracting visual features
that can be used for understanding behaviors, such as potential terrorist attacks. It is
carried out in collaboration with the Hebrew University of Jerusalem.
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