
Accepted to IPA99 Manchester july 1999

Segmentation of moving objects at frame rate: a dedicated hardware solution

R. Cucchiara+, P. Onfiani+, A. Prati+, N. Scarabottolo*

+University of Modena, Italy *University of Crema, Italy

Many works in image processing concern segmentation
of moving objects in sequence of images. This problem
is particularly critical, since it represents the first step of
many complex processes of computer vision, for
applications like object tracking, video-surveillance,
monitoring, and autonomous navigation. In such
applications, both real-time and low-cost requirements
should be satisfied.
To this aim we propose a dedicated hardware solution,
based on reconfigurable logic, that provides motion
detection and moving objects segmentation at frame-
rate.

INTRODUCTION

Techniques for motion extraction from images come
from two opposite approaches. From one side, many
analytical methods of motion analysis have been
formalised: examples are the studies on optical flow
(Beauchemin and Barron (1)), or the extraction of
moving features (Kanade and Tomasi (2), Smith and
Brady (3)); these methods are able of extracting not
only moving points but information of the motion
direction and velocity too, and are generally very
expensive in terms of computational time. For example
in Liu et al. (4), a real-time motion detection system is
proposed, but running on an HyperSparc workstation
with it needs a Datacube MV200. At the other side,
many proposed approaches have been developed only in
function of specific real-time applications, and therefore
prefer empirical and approximated solutions. Examples
are methods based on the analysis of single columns of
pixels for measuring vehicular flow on roads, called
Inductive Loop Emulators (Fathy and Siyal (5)), or
systems that make use of road markings in order to
easily evaluate moving objects with respect to the fixed
background (Bouzar et al. (6)). These video-based
systems works at pixel-level only and are not able of
providing detailed information on individual vehicles,
thus lacking generality and flexibility.
 Our proposal can be viewed as a trade-off between the
goal of achieving object segmentation with very simple

processes (easily portable in hardware) and at the same
time the aim of processing the whole image in order to
extract the complete information of the moving objects
and their shape. The goal is to provide a hardware
solution of the problem of detecting moving objects in
outdoor scene at real-time.
Therefore the aim of this work is the development of a
system for video-surveillance and object tracking with
these issues: simple processes, in order to be able to
develop a cheap and reliable VLSI implementation;
real-time issues, to achieve a frame-rate processing,
necessary for video-surveillance applications; flexible
approach and possibly reconfigurable in dependence of
the final application; on-site implementation without the
necessity of an installation of cumbersome general-
purpose PCs where vehicles have to be detected.

To achieve all these issues a prototype based on SRAM-
based FPGAs has been developed.
 The approach we follow, oriented to surveillance and
traffic control applications, extracts moving points from
images with simple image processing techniques,
segments them in order to obtain moving objects; the
location and identification of object will be used in a
further tracking step (Koller et al. (7), Barattin,
Cucchiara and Piccardi (8)). In particular we adopt a
spatio-temporal filtering that consists in the integration
of motion information from sequences of frames with
the information of gray level variation in each single
frame.
In the paper we outline the proposed approach for
extracting moving objects, that in the specific road
context can be classified as vehicles and we describe the
hardware solution based on reconfigurable-hardware.
Finally we present performance results of the developed
prototype.

THE PROPOSED APPROACH

Moving objects in an outdoor scene can be perceived by
an observer since both motion and luminance contrast
concur to pop the object shape out the background.

Accordingly, many approaches exploit differential
computation with both spatio and temporal filtering. A
possible promising solution (8), exploits the following
steps for moving object extraction:
1) detection of moving points by performing a

difference on three consecutive frames;
2) detection of high contrast points in image, i.e.

points with high gradient, as possible edges of
moving points;

3) perform a Moving Edge Closing, that is a
morphological closure between moving points and
strong edges in order to extract moving objects.

The algorithm for extracting moving points is based on
the difference of three consecutive frames ((8),
Yoshinari and Michihito (9)): we adopt this method
since we proved that is particularly robust to noise due
to camera movements and avoids the detection of very
small moving objects in the scene (such as tree leafs,
reflections..).

The three steps in (8) are followed by other processes
for obtaining separate objects even in presence of
occlusion: the objects are finally classified as moving
vehicles according to some rules and a rule-based
tracking system is proposed.
Independently from the adopted high-level symbolic
system, the low-level system must perform moving
objects segmentation at very high speed, in order to
meet real-time requirements of applications. Therefore,
most or all frames must be processed.
From these requirements, the need of a system able to
segment moving object at frame rate arises. The
previous considered three steps take about one second
tested on a high performance PC for images just stored
in central memory and thus without considering transfer
time for the frame grabber acquisition. This time, even
if it is not too critical, is still far from real-time
requirements. Moreover in many real applications, the
adoption of a standard PC is not affordable for many
reasons, first of all the cost requirements: in many
distributed applications such as road traffic control a
suitable solution should equip all traffic-lights of an
intelligent camera able of detecting and measuring the
vehicular movement.
Finally an alternative could be the real-time transfer of
all frames from the road to a possible processing center:
but also this way is not affordable for the current costs
of transfer bandwidth (for example, in the traffic
control system mounted and running in Bologna, Italy,
cameras transfer rates are of 0.2 frame/sec only).

HARDWARE IMPLEMENTATION

In this context, the main contribution to this work is to
propose a robust approach and its hardware
implementation provided with Field Programmable
Gate Arrays, that answers the requirements of high
integration, and possible low-cost.
The developed prototype is based on the Gigaops G800
board (Giga Ops Documentation (10)).
In this working environment, we have implemented
different versions of differential algorithms for the
moving points extraction with two-frame difference,
three-frame-difference and difference with background
approaches (9) in order to compare results in various
external conditions. As well as moving point extraction,
we perform concurrently edge detection and Moving
edge closure at real-time.

The prototyping board we used is the GigaOps G800
Spectrum board (10), schematically shown in figure 1.
In figure 1 it is possible to notice the main blocks of this
system. The actual computation is performed by pairs of
Xilinx XC4010E FPGA’s, connected in modules called
XMOD’s: in Fig. 1, four modules (MOD0 thrug MOD3)
are shown. Both these FPGAs have two memory ports:
they communicate through a bus switch on the first
memory port. Moreover, there is a module called
SCVIDMOD, that decodes/encodes video signals (PAL
or NTSC). Furthermore, an input FPGA (here called
VLPGA) is connected to the local bus of the PC hosting
the board. An output FPGA (here called VMC) is
connected to SCVIDMOD. Three main busses allow
connections among the various blocks of the board.

We developed the system in VHDL language and
compiled it with Synopsys Tools (Synopsis (11)) . The
netlist file obtained has been translated in bitstream in
order to be downloaded into FPGAs at execution time.
Once bitstream has been produced it can be downloaded
to the hardware every time we need to use it.

Figure 1: Block diagram of the GigaOps G800 board

VEHICLE DETECTION

All operations are executed in pipeline with delay lines
for performing mask near-neighbour algorithms (e.g.
edge detection) exploiting the synchronism clock of the
acquisition system.
In our approach, target extraction is based on spatio-
temporal segmentation: “temporal”, because it exploits
information on moving points; “spatial”, because it
performes convolution to exploit luminance variations
in a 3x3 near-neighbour mask to select edge points. We
define a suitable moving edge closure, in order to obtain
a close contour of a moving object. This algorithm
correlates moving points (that is detected by the double-
difference algorithm) with high gradient point (extracted
with a standard Sobel operator).
Temporal and spatial filtering have to be performed
simultaneously. Therefore we exploit the data
parallelism available in the G800 board in order to meet
the real-time constraints required by the application.

In figure 2, data path is shown. The image coming from
a standard camera and grabbed from decoder
(performed by the SCVIDMOD) flow both to YFPGA1
and to YFPGA2. Through the former we obtain the
double-difference image, while the latter performs edge
detection. Results are sent to the YFPGA3 through
hbus_data(5) and hbus_data(6), respectively. The
former contains the binarized information of the
moving points (using a hysteresis thresolding), the latter
contains the edge image, binarized too.
The lines hbus_data(0)-hbus_data(4) reach each module

to synchronize them through a semi-frame counter.
YFPGA3 performs the moving-edge closure above
described, exploiting information from moving and
contours points. The final results of this operator are
passed to YFPGA4 through hbus_data(15) to be able to
perform a further morphological closure with four
closing steps.
Finally, in the current prototype, results are sent to
encoder (i.e. SCVIDMOD) in order to be displayed on
the monitor.

The final morphological closure is an optional step that
can be useful for providing closed contours of moving
objects. However this iterative operation is time
consuming: therefore total throughput of the system has

been improved with a two-step pipeline, as shown in
figure 3.

PERFORMANCE EVALUATION

The current solution of intersection’s management in
the most of cities equipped with intelligent traffic light
controller is based on the usage of inductive loops.

Figure 2. Data path for final prototype

16

Figure 3. Two-step pipeline

In-2 In-1 In

In-2 In-1 In

...

...

...

...

Double-difference image
Edge detection
Edge-closing

Closing

0 9

0 7

These devices produce only information on the number
of vehicles passing over them. However, lack of
information (then inflexibility) is not the only drawback
of inductive loops. Due to bandwidth of common
infrastructure networks mounted in urban environments,
data output rate is normally slow (in Utopia system (12)
for instance data are updated every 5 seconds) since
acquired information on road must reach the traffic light
control system.
To increase data output rate, enriching information of
the processing system, dedicated hardware solutions are
the most promising choices. ISPDs (In-System
Programmable Devices), such as FPGAs, rely on high
integration and reprogrammability to being very useful
for rapid prototyping. Furthermore, on-site installation
of such devices implies the limitation of the bandwidth
in order to meet the real-time constraints, relying on the
possibility of local processing in order to transmit
synthetic result of processes only, instead of the whole
frames.
The european PAL video standard adopts a frame rate
of 25 frames/sec., that is one frame every 40 msec.
Since PAL standard is interleaved, the above times refer
to semi-frames and since double-difference operator
needs three whole frames to be performed, in theory we
need 240 msec to obtain double-difference image.
But, due to the data-parallelism introduced and to the
two-step pipeline shown in figure 3, we are able to
overlap operations obtaining YFPGA3’s output in 240
msec (edge detection operation is performed in parallel
on the source image).
We shall be able to use only three consecutive frames,
obtaining frame rate behaviour. Nevertheless, in order
to catch movement of vehicles driving from 40 to 60
km/h, we output one frame every five.

As shown in figure 3, the morphological closure must
wait the end of moving-edge closure to be able to be
performed. Moreover, each step of the closure needs the
result of the previous one. With a four-steps closure this
means a latency time of 160 msec, to be added to the
240 msec of previous stage of the processing. But since
we can pipeline the two steps (onto the last performing
step of the double-difference), we can obtain final result
in 200+160=360 msec.
Since 200 msec are due to acquisition time, we are able
to produce a refreshing time of output image of 160
msec, that is 5 frames/sec. This is enough to obtain a
sufficiently good continuity of the movement in the
result image. Nevertheless, the 240 msec for double-
difference computation are necessary to catch only
strong movement of the objects in the scene and to
increase robustness of the system.

EXPERIMENTAL RESULTS

Figure 4 show one example frame of four possible video
output of our system that, using a standard PAL camera,
is able to furnish different video output forms at frame-

rate: the sequence of the standard colour image as in
Fig. 4a (without any image processing), the moving
points as in Fig. 4b, the edge points in Fig. 4c and the
moving objects (Fig. 4d), obtained with one-step
morphological closure. Therefore a real-time processing
is performed and also a severe compression of the
images (from colour pixel to 1-bit/point images)
keeping only the important information about motion
and, at the same time, requiring a very limited
bandwidth.
 The system has been tested on real road traffic scenes
in the cities of Modena and Bologna (Italy). This work
is a part of a project sponsored by the Bologna
Provincia government for a city control center with
vision based traffic monitoring.

Figure 4. Sample images

CONCLUSION AND FUTURE WORKS

In this paper, we have presented a traffic-control system
implemented by using FPGAs. Nevertheless, this
system is low-level implementation of a complete urban
traffic controller able to track vehicles, count/classify
vehicles (for special applications, such as reserved lane
for busses, which needs a vehicles classification in loose
sense) and to extract extra-information such as turning
rates, position and length of the queue, etc.
In (8), the algorithm setup for day time condition and
the high level tracking module has been presented. This
paper reports the hardware implementation of the low-
level algorithm. At the same time, research activities for
other day conditions, and in particular at night, are
performed (Cucchiara and Piccardi (13)).
Performed experiments show that the vehicle detection
under different light condition requires very different
image processing algorithms depending on the different
visual cue that have to be detected (e.g. vehicle template
at daytime and headlight at night). This analysis
suggests the exploitation of a reconfigurable low level
system able for adaptively change its computational
function. In the next future we intend to implementing
this dynamically configurable behaviour in hardware,

by exploiting the in field reprogrammability of the
FPGAs.

Testing the system upon more sequences (and from
different condition, such as rainy, foggy and cloudy) is
another goal for the next future.

BIBLIOGRAPHY

1. Beauchemin, S. S., Barron, J. L. . “The computation
of optical flow”. ACM Computing Surveys, 27, No. 3
(Sept. 1995), 433-466
2. Tomasi, C., Kanade, T. . “Detection and tracking of
point features”. Technical Report CMU-CS-91-132,
Carnegie Mellon University, Apr. 1991
3. Smith S.M. Brady J.M. “Asset-2: real-time motion
segmentation and shape tracking” IEEE Trans of PAMI
17(8) 814-820 1995
4. Liu, H., Hong, T., Herman, M., Chellappa, R. .
“Motion-Model-Based Boundary Extraction and a Real-
Time Implementation”. Computer Vision and Image
Understanding, 70, No. 1, April 1998, 87-100
5. Fathy, M., Siyal, M.Y. “Real-time measurement of
traffic queue parameters by using image processing
techniques”. IEE Proc. - Image Processing and its
Applications n 410 , 450-453 (1995).
6. Bouzar S., Lenoir F., Blosseville J. Glachet R.
“Traffic measurement: image processing using road
marking”. Proc. Of IEE Road Traffic Monitoring and
Control n.422, 105-109 (1996)
7. Koller, D. Weber, J., Huang, T., Malik, J.,
Ogasawara, G., Rao, B., Russel, S. “Towards Robust
Automatic Traffic Scene Analysis in Real-Time.” Proc.
Int’l Conf. Pattern Recognition, 126-131 (1994).
8. Barattin M., Cucchiara R. , Piccardi M. “A Rule-
based Vehicular Traffic Tracking System” Proc. Of
CVPRIP98 North Caroline 1998
9. Yoshinari K., Michihito M. “A human motion
estimation method using 3-successive video frames”
Proc. Of Intern. Conf. On Virtual systems and
multimedia Gifu, 135-140 1996
10. Giga Operations Corporation. “SPECTRUM™
Reconfigurable Computing Platform – Documentation,
Release 3.01”
11 Synopsis, FPGA Compiler User Guide v 3.5
Mountain view (USA) 1996
12 Mizar Automazione, "UTOPIA Urban Traffic
Control, Technical Reference Manual", january 1997
13 Cucchiara R., Piccardi M. "Vehicle Detection under
Day and Night Illumination" Proc. of ISCS-IIA99
Special session on vehicle traffic and surveillance, June
June 1999

