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Abstract

This paper proposes a general-purpose method to track
the steering wheel’s absolute angle by using a single
camera vision system mounted inside the car. The ap-
proach is based on the modeling of the motion of the
steering wheel, as it appears perspectively distorted by
the point of view of the un-calibrated camera. We mod-
ified the Lucas-Kanade method for an approximatively
rotational motion model in order to provide the detec-
tion and tracking of significant features on the wheel.
The experimental results are compared with ground-
truthed data obtained with different types of sensors.

1 Introduction

Real-time analysis of videos acquired from a camera
mounted on a moving vehicle (namely camera-car) can
be very attractive due to the large amount of visual in-
formation that can be extracted both inside the vehicle
(to assess the driver conditions and control the environ-
ment to prevent from dangerous situations) and outside
the vehicle (for automatic guidance purposes, as vehicle
control and obstacle avoidance). In the first context,
new research activities are devoted to the assessment
of the driver’s posture for smart air bag deployment,
or to the acquisition of driving information. Another
example is the use of cameras to detect potentially dan-
gerous situations in which the driver is distracted (e.g.,
because he responds to a cell phone while is driving).

In this framework an interesting problem is the detec-
tion of the steering-wheel rotation angle. The possibil-
ity to compute this angle in real-time can be exploited
to provide a feedback to the driver in terms of vir-
tual (or augmented) reality, or to support an automatic
guidance system, or to analyze the style of the driving
by observing how the steering wheel’s angle changes
along time.

Theoretically, the same information could be obtained
by other types of sensors, such as electro-mechanical
sensors, potentiometers, and so on, applied to the steer-
ing wheel. The advantages of a vision-based system are
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Figure 1: Examples of applications: (a) an application for
automated telemetry from camera-car videos
(with the courtesy of Ferrari Spa, Italy) and
(b) a car testing facility (with the courtesy of
Centro Ricerche Fiat - Orbassano, Italy).

basically three: first, the other types of sensors require
a more invasive installation, and, moreover, cameras
can be easily moved from one vehicle to another; sec-
ond, electronic sensors can not work on pre-registered
data, i.e. they can only obtain results on the moment,
in real-time; third, the amount and the semantics of
the information provided by a camera are more than
any other type of “blind” sensor. As an example, refer
to Fig. 1(b) where a special steering wheel equipped
with potentiometers is used to acquire ground-truthed
data.

According with these considerations, we propose a
general-purpose approach to detect the rotation angle
of the steering wheel in a reliable manner. The method
can be used to track the trajectory of the car by track-
ing the rotation angle frame by frame.

research works address the problem of detecting the
motion of rigid objects: often the motion is assumed as
a translational model (for instance the Lucas-Kanade
method and derived approaches [3]); more generally,
an affine model in the 3D space is assumed: this ap-
proach is very general and very complex and there-
fore highly time consuming. Thus, is often used as a
first qualitative step to detect motion in videos [2]. In
this work, instead, we start from a constrained motion
model since we aim to detect and track the rotation of



a rigid object around a fixed point. A little effort in
the research community has been done to study this
type of problems. However, as for similar problems,
we can subdivide the approaches in two main classes:
based on the object-model and on the motion-model.
The first class assumes that the model of the object to
be tracked is known. Consequently, a shape recogni-
tion algorithm can be used to localize the object (and
its orientation) in each frame. These methods are usu-
ally based on template or shape detection approaches
such as the Hough transform (HT), as the basic HT for
parametric curves or the generalized Hough Transform
for general templates.

The second class is instead based on the model of the
motion of the object or part of it.

The first approach is applicable only if the object is
a-priori known. Thus, for instance, it must be tuned
and changed for each possible steering wheel model.

The second approach, instead, requires a reliable tech-
niques to detect motion or optical flow for each image
pixel, or calls for a first robust stage for extracting sig-
nificant points or features from each frame, in order to
compute their motion.

2 The proposed approach

Our approach belongs to the class of motion-based
techniques. Consequently, it can only compute the dis-
placement of the points in a frame w.r.t. the points
of the previous frame: thus, it suffers of the drawback
of computing the absolute angle as a sum of relative
angles. In particular, our method computes the ab-
solute rotation angle of a steering-wheel (with respect
to an initial zero-degree position) as an accumulation
of inter-frame relative rotations. We can detect the
passage for the zero-degree position in order to re-align
the measured angle with the real (absolute) angle, thus
avoiding error propagation. This is, indeed, the only
process in which part of the model of the steering-wheel
is required and will not be described due to lack of
space.

Obviously, we can start from the assumption that the
points of the steering wheel move with the same circular
motion. However, due to the pinhole camera model [1],
this is true in the image plane only if the focal plane of
the camera is parallel to the steering wheel plane. In
the other cases, because of the perspective, the points
can be approximated as moving on to an ellipse. Since
our scope was to provide a method that can work in as
many situations as possible, we have used an elliptical
model as reference.

Once the model of the motion is defined, the first phase

is to detect “significant” features on the wheel. A fea-
ture must be considered as “significant” if it is easy
to track between two consecutive frames. To extract
features we used the well-known algorithm of Tomasi-
Kanade [4, 5]. Eventually, once the features have been
detected in two consecutive frames, we must match the
same feature into the two frames. This phase is called
feature tracking and will be detailed in the next sub-
section.

2.1 Feature Tracking
Let us consider a feature as a window of 3x3 points for
the sake of simplicity. In the case of elliptical motion
of the features, the actual motion of the features is not
only translational, but roto-translational.

Figure 2: The roto-translation of a 3x3 feature

As a consequence, a feature does not only change its
position inside the next frame, but it also rotates. This
involves a non-correspondence between intensity of pix-
els with the same relative position, as shown in Figure
2, where the dotted line version is the case of pure
translational motion.

To track a feature we have implemented two methods.
The first is directly derived from the Lucas-Kanade
tracking method [3, 5] is based on the hypothesis of
only translational motion. The second method consid-
ers a roto-translational motion by modifying the Lucas-
Kanade method to take also the rotation into account.

Considering a coordinate system < O,Xn, Yn > with
the origin in the center of the 3x3 window in a reference
frame, the polar coordinates of each point of the win-
dow in the reference frame is known and it is (ρn, ϑn).
We can easily compute the polar coordinates (ρ′

1, ϑ
′
1)

in the main reference system:

ρ′
1 =

√
ρ2

n + ρ2
1 − 2ρnρ1 cos ϑn (1)



ϑ′
1 = ϑ1 + arccos

(
ρ1 − ρn cos ϑn√

ρ2
n + ρ2

1 − 2ρnρ1 cos ϑn

)
(2)

Once these coordinates are known, it is straightforward
to obtain the coordinate (ρ′

2, ϑ
′
2) of another point of the

window in the new position by adding a displacement
vector ∆ρ,∆ϑ). Unfortunately, this is not true in the
case of roto-translational motion and this introduces
an additional error in the positioning of corresponding
points of the window. As a consequence, the matching
will be less precise.

Let us call I and J two consecutive frames. Thus,
the correct equation in the case of roto-translational
motion should be:

I(ρ′
1 cos ϑ′

1, ρ
′
1 sinϑ′

1) = J((ρ′
1 + ∆ρ) cos(ϑ′

1 + ∆ϑ),
(ρ′

1 + ∆ρ) sin(ϑ′
1 + ∆ϑ))(3)

These considerations refer to the general case with
elliptical motion and 3x3 window. Obviously, this
method will work also with larger windows and circular
motion.

It can be interesting to underline that, due to the ro-
tation of the window, the new coordinates (ρ′

2, ϑ
′
2) can

correspond to not integer coordinates, thus an interpo-
lation method is mandatory to determine the intensity
of the real point. This interpolation will introduce fur-
ther approximations to the matching. Please note that
this interpolation is not necessary if we suppose the
motion as pure translational. Moreover, the compu-
tational load is heavily affected by the more intensive
computation and by the interpolation required by the
second method. As a consequence, and taking into ac-
count that the improvement in the efficacy introduced
by the second method is not so relevant, we have de-
cided to suppose initially the model as translational,
by approximating the search using the first method.
Thus, a further refinement phase is necessary that ver-
ifies if the motion can be acceptable with an elliptic
trajectory.

2.2 Feature Selection and Angle Computation
In the previous sub-section we described the methods
used to track features between two consecutive frames.
Though this method is accurate, the set of matched fea-
tures is typically full of outliers. The reason is twofold:
first, there is always a lot of noise in camera-car videos
(in particular if acquired with radio technologies as in
the Formula 1 races); second, the hands of the driver
on the steering wheel can have their own motion that
is, most of the times, opposite to (or in general different
from) the steering wheel’s motion.

Consequently, we have to perform two further tasks to
remove outliers from this set. The first task is to impose
additional constraints to the matching rules in order to
prevent motion of the features clearly not on an ellipse.
By simple rules we prevent, for example, that a feature
moves radially from one frame to the next.

The second task is devoted to the computation of the
relative angle from the set of (reliable) features’ mo-
tions. The rationale is that in an ideal case all the
features of the steering wheel should have the same
motion. Unfortunately, the ideal case is very rare, and
noise and outliers create different motions that must
be filtered.

To do this we have experimented and compared many
methods, and found that the best one is the following.
Let us call A the set of relative angles computed at this
step and α the absolute angle computed at the previous
step. From the value of α we can decide if the vehicle
is in a rectilinear part or is approaching a curve. We
use this information to select the statistical function to
be used to compute the new relative angle value:

• if State = Rectilinear → Relative Angle = Me-
dian (A)

• if State = Curve → Relative Angle = Mean (A’)

where A’ is the set with the maximum cardinality be-
tween A+ (set of positive angles) and A- (set of nega-
tive angles).

The absolute angle is computed by adding the relative
angle to α.

3 Experimental Results

To evaluate the proposed methods we collected data
from an vehicle instrumented with sensors able to get
synchronized telemetric data to compare our results
with.

As a benchmark, we used a sequences acquired by nor-
mal television and reports part of a Formula 1 race
shot by a camera-car mounted on the left top of the
driver’s cockpit (Fig. 1(a)). We tested our motion-
based method on this sequence and the comparison is
reported in Fig. 3. This sequence was obtained with
the courtesy of Ferrari Gestione Sportiva Spa.

4 Conclusions

In this paper we have described our method for com-
puting the absolute angle of a steering wheel by using



Figure 3: Graph showing the comparison between computed absolute angle and angle obtained by telemetric sensors

only a single camera. The proposed approach is based
on the computation of significant features by means
of Tomasi-Kanade algorithm and on the subsequent
tracking of them by using a modified version of the
Lucas-Kanade tracking algorithm. This modification
takes into account the model of the motion of the points
belonging to the steering wheel.

A feature selection method combined with a set of rules
to compute the relative angle for each frame are then
used to remove noise and outliers. We presented ex-
perimental results on a significant sequence to testify
the correctness of the approach.

Much work can be still done to make to method reliable
on different situations, but the preliminary results are
very satisfactory and promising.
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