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Symbols and Definitions

Table 1: Symbols and Conventions
Symbol Definition

It Image frame at time t
I(x) I(x, y) Point x = (x, y) of the image I

B Background image
A Appearance image
Ft Foreground image

DBt Distance image
V O Visual Object: foreground object extracted for example

with a background suppression algorithm
−→mv(x, y) motion vector computed at the coordinate (x, y), where

ρ and α are the magnitude and the angle of the vectors
expressed using the polar coordinates

DH Direction Histogram, i.e. the histogram of the motion
vector directions

ρR motion reliability of a region R

O Single real object tracked in the scene, described by the
state vector: O = {{o1, . . . , oN},~c, ~e, Π}

Ot set of objects at time t
{oi} set of the N points which constitute the object O
~x(o) gives the coordinates vector (x, y) of the point o

¯(o) gives the RGB color vector of the point o
α(o) gives the alpha component of the point o

~c position with respect to the image coordinate system of
the object centroid

~e velocity of the object centroid
ĉ estimated position with respect to the image coordinate

system of the object centroid
Π probability of non-occlusion, i.e. probability of being

the foremost object
gO matching function between the points of F and the point

of the object O
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Symbol Definition
F̃ set of foreground’s points which match at least one ob-

ject
Õ codomain of the function gO, that includes the points of

O which have a correspondence in F̃

RDO region with a dynamic occlusion due to overlap of an-
other object

RSO region with a scene occlusion due to (still) objects in-
cluded in the scene

RAO region with an apparent occlusions, i.e. region not visi-
ble because of shape changes, silhouette’s motion, shad-
ows, or self-occlusions

B = {b(x, y)} Blob mask of an object
θB horizontal projection histogram of a blob B
πB vertical projection histogram of a blob B

PhB , (θB, πB) Projection histogram set computed on the blob B
ΓM Set of the four main detected postures: standing, sitting,

crawling, laying
ΓV B Set of view based postures, where the four main postures

are specialized taking into account the view: frontal, left
side, right side

SP support point position, i.e. the point of contact between
the person feet and the floor

Ξ̃ head model, with Ξ̃ =
{

(X̃c, Ỹc), W̃ , H̃
}

Ξ head candidate
Li,sh , h = 1..4 h-th 3D Field of View of the camera Ci, with sh cor-

responding to one of the four image borders x = 0,
x = xmax, y = 0, and y = ymax

Li,s
j the 3DFoV line corresponding to s of the Camera Ci

seen by the camera Cj



Chapter 1

Computer Vision based
Surveillance Systems

1.1 Introduction

After September 11, 2001, preempting terrorist acts,and providing for the secu-
rity of citizens at home and abroad have become top priorities not only for the
United States but for many other nations around the globe. To this aim, a huge
amount of information needs to be captured, processed, interpreted and analyzed.
Various computer based technologies can provide a great help in addressing these
challenges. Traditional Close Circuits TeleVision (CCTV) networks are a well
established off the shelf product with well defined specifications and a mature mar-
ket [2]. However, this kind of surveillance brings with it the problem of managing
the large volume of information that can be generated by such a network of cam-
eras. The video streams are transmitted to a central location, displayed on one or
several video monitors and recorded. Security personnel observe the video to de-
termine if there is ongoing activity that warrants a response. Given that such events
may occur infrequently, detection of salient events requires focused observation by
the user for extended periods of time.

Commercially available video surveillance systems attempt to reduce the bur-
den on the user by employing video motion detectors to detect changes in a given
scene [3]. Video motion detectors can be programmed to signal alarms for a vari-
ety of reasonably complex situations, but the false alarm rate for most systems in
typical environments is unacceptable yet.

Ideally, a video surveillance system should only require the user to specify the
objectives of the surveillance mission and the context necessary to interpret the
video in a simple, intuitive manner. For many scenarios real-time interpretation
is required for the information produced by the system to be valuable. Therefore
the challenge is to provide robust real-time video surveillance systems that are
easy to use and are composed of inexpensive, commercial off-the-shelf hardware
for sensing and computation. Given the capability to interpret activity in video
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streams in real-time, the utility of a video surveillance system increases dramati-
cally and extends to a larger spectrum of missions. With such a system, a single
user can observe the environment using a much larger collection of sensors. In
addition, continuous, focused observation of activity for extended periods of time
becomes possible. As such capabilities mature, the roles of video surveillance sys-
tems will encompass activities such as peace treaty verification, border monitoring,
surveillance of facilities in denied areas, hazard detection in industrial facilities and
automated home security.

In-house safety is a key problem because deaths or injuries for domestic inci-
dents grow each year. This is particularly true for people with limited autonomy,
such as visually impaired, elderly or disabled. Currently, most of these people are
aided by either a one-to-one assistance with an operator or an active alarming sys-
tem in which a button is pressed by the person in case of an emergency. Also,
the continuous monitoring of the state of the person by an operator is provided
by using tele-viewing by means of video surveillance or monitoring worn sensors.
However, these solutions are still not fully satisfactory, since they are both too ex-
pensive or require an explicit action by the user (e.g., to press a button), that is not
always possible in emergency situations.

Furthermore, in order to allow ubiquitous coverage of the persons movements,
indoor environments often require a distributed setup of sensors, increasing costs
and/or required level of attention (since, for example, the operator must look at
different monitors). To improve efficiency and reduce costs, on the one hand the
hardware used must be as cheap as possible and, on the other hand, the system
should ideally be fully automated to avoid both the use of human operators and
explicit sensors. Again, standard CCTV surveillance systems are not so widespread
in domestic applications since people do not like to be continuously controlled by
an operator. Privacy issues and the “big brother” syndrome prevent their capillary
distribution, even if the technology is now cheaper (cameras, storage, and so on).
Conversely, new solutions, fully automated and without the need of a continuous
monitoring of human operators, are not invasive and can be acceptable in a home
system.

Automating the detection of significant events by means of cameras requires
the use of computer vision techniques able to extract objects from the scene, char-
acterize them and their behavior, and detect the occurrence of significant events.
Peoples safety at home can be monitored by computer vision systems that, using a
single static camera for each room, detect human presence, track peoples motion,
interpret behavior (e.g. recognizing postures), assess dangerous situations com-
pletely automatically and allow efficient on-demand remote connection. Since the
features required by these systems are always evolving, general purpose techniques
are preferable to ad-hoc solutions.
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1.2 Related Work in Video Surveillance

The set of challenges outlined above span several domains of research. Some of
that are faced and described in this thesis. We will review the majority of relevant
work directly in the correspondent chapter. In this section, we will focus on famous
generic video surveillance systems proposed in the literature only.

Some noteworthy prototypes of CV-based people tracking systems have been
developed in the last decade, especially in the U.S.A., and funded by DARPA (De-
fences Advances Research Projects Agency) programs. One of the pioneering sys-
tems of people tracking is Pfinder (“Person Finder”) [4], developed at MIT Media
Labs, that employs the Maximum A Posteriori (MAP) probability models to de-
tect human body in 2D image planes, especially in indoor scene. The famous W 4

(“What, Where, When, Who”) system developed at University of Maryland, is able
to detect multiple people in the outdoors and to analyze body silhouette for infer-
ring people’s activity [5]. VSAM (Video Surveillance And Monitoring), devel-
oped at Carnegie Mellon University, was a big project of cooperative multi-camera
surveillance applied in the University campus [6]. Similar research has been car-
ried out in private US research Labs: at IBM, the group of People Vision Project [7]
proposed new solutions for appearance-based tracking, also in cluttered indoor en-
vironments; at the Siemens labs, in the Imaging and Visualization Department [8]
the first formulation of tracking based on mean-shift techniques was defined, in
order to follow also body parts in crowded environments. In Europe, since 1996,
the group of Prof. Blake at Oxford university proposed Condensation (Conditional
Density Propagation) [9] approach to track moving objects also from moving cam-
eras. Many European projects were funded for video surveillance which include
Advisor and Avitrack. At the ImageLab Laboratory in Italy the Sakbot (Statistical
And Knowledge-Based Object Tracker) system [1] has been developed to detect
and track people and vehicles using an approach which is robust to occlusions and
shadows. It has been used in projects in collaboration with University of Califor-
nia at San Diego [10] for security and with European companies in the area of
intelligent transportation systems [11].

Nowadays, many consolidated techniques have been tested for tracking single
people from single fixed cameras, and possibly extracting body information, if the
camera is placed in an adequate position to have enough resolution for the body
shape. Therefore, many researches worldwide are now focusing on distributed
cameras and multi-modal acquisition, such as fixed and moving pan-tilt-zoom
(PTZ) cameras. Hu et al. [12] report a good survey of multi-camera surveillance
systems. Mubarak Shah at University of South Florida [13] proposed an approach
for learning geometrical information for consistent labeling or spatially coherent
labeling [14], i.e. to maintain the identification of a person and its trajectory when
he/she is moving from the field of view of a camera to the one of another camera,
by means of homographic geometrical reconstruction. An improved approach has
been defined also by the NPD partner. This approach exploits both homography on
the ground plane and epipolar geometry, by using the automatically-extracted feet
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and the head position, respectively [15]. This allows the tracking and disambigua-
tion of groups of people in areas covered by multiple cameras.

The use of active (PTZ) cameras to acquire high-resolution images of portions
of the scene or to follow (and “keep in the scene”) interesting people has been
proposed recently in the literature [16]. On this topic, the NPD partner has been on
the frontier by being first to propose a system based on a single PTZ camera [17].

1.3 Thesis Overview

In this thesis a description of most of the components of a videosurveillance system
will be given. Fig. 1.1 shows a scheme of the overall architecture of our system.
The blocks colored in green are not described in this treatment. We have con-
sidered different kinds of input devices: static cameras, PTZ camera, and handled
cameras. For each of these input frame sources, a suitable foreground segmentation
algorithm have been studied and developed, respectively, a traditional Background
Suppression (Chapter 2), a background mosaicing for PTZ cameras (Chapter 3),
and a MRF framework for object detection with moving cameras (Chapter 4). The
foreground image should be analyzed in order to separate and follow the single
objects along time; to this aim, an appearance based object tracking have been
proposed (Chapter 5).

The detected objects can be classified to distinguish among people, vehicles,
furniture, animals, and so on. This task is strongly dependent on the application
and the point of view; thus, in this dissertation we skip the classification phase in-
troducing some empirical and context based rules to identify the interesting targets
(e.g., people).

People Video surveillance can be carried out through several kinds of informa-
tion extractors; the two most frequently used will be described, i.e. the Posture
Classification (Chapter 6) and the Face Detection (Chapter 7). These two chap-
ter can be considered the main contribution of this thesis as well as my research
activity of these three years.

The previously described task sequence can be seen as a high level feature
extraction from a single video source. These features can be combined in a reason-
ing system, for example to detect alarm situation, events of interest, or to produce
and store video annotations. Furthermore, a new video stream can be generated
keeping the semantic content of the input video and, at the same time, meeting
the requirements and constraints imposed by the remote device (e.g., bandwidth,
resolution, number of colors, etc ...) (Section 11).

Minimum resolution and maximum frame size are two constraints usually im-
posed to assure satisfactory performance and a real time computation. This bring to
reduce the field of view of each camera, requiring a multicamera system to cover
the entire scene of interest. An integration between different video sources and
among cameras and other sensors can be carried out, aiming at covering a wider
area or improving the system performance. In Chapter 8 details about the consis-
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Figure 1.1: Overall Scheme of a People Video surveillance System
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tent labeling algorithm we proposed are reported. Goal of the consistent labeling
module is the detection of correspondences between different views of the same
object (person). Chapter 9 describes some techniques useful to recover the trajec-
tory of a moving handled camera by means of reference image acquired by static
and geo-referenced cameras. Finally, Chapter 10 presents some possible employ-
ments of hardware sensor, e.g. proximity PIR sensors, to improve video based
surveillance systems.



Part I

Object Detection and Tracking





Chapter 2

Fixed Cameras: the Sakbot
system

2.1 Introduction

Detection of moving objects in video streams is the first relevant step of informa-
tion extraction in many computer vision applications, including video surveillance,
as well as people tracking, traffic monitoring and semantic annotation of videos.
In these applications, robust tracking of objects in the scene calls for a reliable and
effective moving object detection that should be characterized by some important
features: high precision, with the two meanings of accuracy in shape detection and
reactivity to changes in time; flexibility in different scenarios (indoor, outdoor) or
different light conditions; and efficiency, in order for detection to be provided in
real-time as well as allow further elaboration and reasoning steps.

In this task, we assume that the models of the target objects and their motion
are unknown, so as to achieve maximum application independence. In the absence
of any a priori knowledge about target and environment, the most widely adopted
approach for moving object detection with fixed camera is based on background
subtraction [4, 18–25]. An estimate of the background (often called a background
model) is computed and evolved frame by frame: moving objects in the scene are
detected by the difference between the current frame and the current background
model. It is well known that background subtraction carries two problems: the first
is that the model should reflect the real background as accurately as possible, to al-
low the system accurate shape detection of moving objects. The second problem is
that the background model should immediately reflect sudden scene changes such
as the start or stop of objects, so as to allow detection of only the actual moving
objects with high reactivity (the “transient background” case). If the background
model is neither accurate nor reactive, background subtraction causes the detection
of false objects, often referred to as “ghosts” [18, 20]. In addition, moving object
segmentation with background suppression is affected by the problem of shad-
ows [21, 26]. Indeed, we would like the moving object detection to not classify
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shadows as belonging to foreground objects, since the appearance and geometri-
cal properties of the object can be distorted and delocalized, which in turn affects
many subsequent tasks such as posture classification. Moreover, the probability
of object undersegmentation (where more than one object is detected as a single
object) increases due to connectivity via shadows between different objects.

The approach adopted in this work has been defined at Imagelab in 2001 [1,27]
and is called Sakbot (Statistical And Knowledge-Based ObjecT detection) since it
exploits statistics and knowledge of the segmented objects to improve both back-
ground modeling and moving object detection. Sakbot has been used in differ-
ent projects of indoor and outdoor surveillance. In [28] has been compared with
MOG [20]. Sakbot’s processing is the first step for most of the processes described
in the following chapters, such as people tracking, posture classification, and so
on.

Feature Systems
Statistics •Minimum and maximum values [18]

•Median [29, 30], [1]
• Single Gaussian [4, 21, 31]
•Multiple Gaussians [20, 26, 32]
• Eigenbackground approximation [22, 33]
•Minimization of Gaussian differences [23]

Adaptivity [4, 18, 19, 22, 24, 34], [1]
Selectivity [18, 19, 24, 26], [1]
Shadow [21, 26], [1]
Ghost [18, 20], [1]
High-frequency • Temporal filtering [22, 32, 33]
illumination changes • Size filtering [1]
Sudden global [18], [1]
illumination changes

Table 2.1: Compared background subtraction approaches. Our approach is referred with
[1].

Many works have been proposed in the literature as a solution to an efficient
and reliable background subtraction. Table 2.1 is a classification of the most rel-
evant papers based on the features used. Most of the approaches use a statistical
combination of frames to compute the background model (see Table 2.1). Some
of these approaches propose to combine the current frame and previous models
with recursive filtering (adaptivity in Table 2.1) to update the background model.
Moreover, many authors propose to use pixel selectivity by excluding from the
background update process those pixels detected as in motion. Finally, problems
carried by shadows have been addressed [21,26,35]. The adopted method proves to
be accurate and reactive, and at the same time fast and flexible in the applications.
Details on comparison between Mode, Median and statistic functions are in [36].
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2.2 Background suppression

Let us call x a point of the video frame I at time t (x ∈ It). It(x) is the value of
point x in the color space. Since images are acquired by standard color cameras
or decompressed from videos with standard formats, the basic color space is RGB.
Thus It(x) is a vector with R,G,B components. The goal is to compute, at each
time t, both the set V Ot of visual objects and the background model Bt.

Bt is the background model at time t and is defined for each point of the image.
If x is a point of the uncovered background then Bt(x) should correspond to its
value in the current frame; however, if x is a point of a visual object (i.e. that has
been segmented and classified), Bt(x) is an estimation of the value of background
covered by the object itself.

If point x does not belong to any object, the background value in x is predicted
using only statistical information (Bt+∆t(x)) on the following set S of elements:

S = {It(p), It−∆t(p), ..., It−n∆t(p)} ∪ wb{Bt(p)} (2.1)

As it is possible to note from Eq. 2.1, in order to improve the stability of the
model we exploited adaptivity too. We include an adaptive factor by combining
the n sampled frame values and the background past values (with an adequate
weight wb). The n frames are sub-sampled from the original sequence at a rate of
one every ∆t (typically one every ten). Then, the statistical background model is
computed by using the median function (as in [29, 30]) as follows:

Bt+∆t(p) = arg min
i=1,...,k

k∑
j=1

Distance(xi,xj) xi,xj ∈ S (2.2)

where the distance is a L-inf distance in the RGB color space:

Distance(xi,xj) = max(|xi.c− xj .c|) with c = R,G,B. (2.3)

In the experiments, the median function has proven effective while, at the same
time, of less computational cost than the Gaussian or other complex statistics.

Foreground points resulting from the background subtraction could be used for
the selective background update; nevertheless, in this case, all the errors made dur-
ing background subtraction will consequently affect the selective background up-
date. A particularly critical situation occurs whenever moving objects are stopped
for a long time and become part of the background. When these objects start again,
a ghost is detected in the area where they were stopped. This will persist for all
the following frames, preventing the area to be updated in the background image
forever, causing deadlock [26]. Our approach substantially overcomes this prob-
lem since it performs selectivity not by reasoning on single moving points, but on
detected and recognized moving objects. This object-level reasoning proved much
more reliable and less sensitive to noise than point-based selectivity.
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Therefore, we use a knowledge-based background model, i.e., a selectively
updated background, in the sense that a different background model is selected
whether the point belongs to an object or not. Differently from other proposals
( [18,19,24,26]), selectivity is at object-level and not at pixel-level only, in order to
modify the background in accordance with the knowledge of the objects detected
in the scene. The advantage is that the background model is not “corrupted” by
moving objects and thus it is possible to use a short ∆t and a small n so as to also
achieve reactivity.

In our approach, after background subtraction, a set of points called foreground
points is detected and then merged into labeled blobs according to their connectiv-
ity. An initial camera motion compensation might have been performed previously,
should the application require it (for example, to compensate small camera vibra-
tions due to non-ideal operational conditions). This step is based on the choice of
a fixed reference in the scene assumed to be never occluded at run time. In order
to improve detection, background subtraction is computed by taking into account
not only a point’s brightness, but also its chromaticity, as in Eq. 2.3.

DBt(x) = Distance(It(x),Bt(x)) (2.4)

The L-inf distance has proven effective in our experiments, while at the same time
being less computationally expensive than other distances. In fact, other metrics
can be used as the Euclidean distance, or the Mahalanobis distance used in [4], but
this last is computationally more severe since it associates the correlation between
parameters using the covariance matrix.

The selection of the initial set of foreground points is carried out by select-
ing the distance image DBt defined in Eq. 2.4 with an adequately low threshold
TL. Among the selected points, some are discarded as noise, by applying morpho-
logical operators. Then, the shadow detection process is applied (as described in
Section 2.3) and the detected points are labeled as shadow points. A region-based
labeling is then performed to obtain connected blobs of candidate moving objects
and shadows. Eventually, blob analysis validates the blobs of candidate moving
objects as either moving objects or ghosts. V Os are validated by applying a set of
rules on area, saliency and motion as follows:

• The blob V O must be large enough (greater than a threshold TA that depends
on the scene and on the signal-to-noise ratio of the acquisition system); with
this validation, blobs of a few pixels (due, for instance, to high frequency
background motion, like movements of tree leaves) can be removed;

• The blob V O must be a “salient” foreground blob, as ascertained by a hys-
teresis thresholding. The low threshold TL set on the difference image DBt

inevitably selects noise together with all the actual foreground points. A high
threshold TH selects only those points with a large difference from the back-
ground and validates the blobs which contain at least one of these points.



2.2 Background suppression 29

• The blob V O must have non negligible motion. To measure motion, for
each pixel belonging to an object we compute the spatio-temporal differen-
tial equations for optical flow approximation, in accordance with [37]. The
average optical flow computed over all the pixels of a V O blob is the figure
we use to discriminate between V Os and ghosts: in fact, V Os should have
significant motion, while ghosts should have a near-to-zero average optical
flow since their motion is only apparent.

Optical flow computation is a highly time-consuming process; however, we
compute it only when and where necessary, that is only on the blobs resulting from
background subtraction (thus a small percentage of image points). In [28] this part
has been modified in order to reduce the computational cost and to improve the
bootstrap phase. The same validation process should also be carried out for shadow
points, in order to select those corresponding to the set of VO shadows and those
belonging to ghost shadows. However, computing the optical flow is not reliable
on uniform areas such as shadows. In fact, the spatial differences in the optical flow
equation is nearly null because shadows smooth and make uniform the luminance
values of the underlying background. Therefore, in order to discriminate V O shad-
ows from ghost shadows, we use information about connectivity between objects
and shadows. Shadow blobs connected to V Os are classified as shadows, whereas
remaining ones are considered as ghost shadows. The box of Fig. 2.1 reports the
rules adopted for classifying the objects after blob segmentation. All foreground
objects not matching any of the rules in Fig. 2.1 are considered background and
used for background update.

< V O > ←− (foreground blob) ∧ ¬ (shadow) ∧
(large area) ∧ (high saliency) ∧ (high
average optical flow)

< Ghost > ←− (foreground blob) ∧ ¬ (shadow)
∧ (large area) ∧ (high saliency)
∧ ¬ (high average optical flow)

< V O shadow > ←− (foreground blob)∧ (shadow)∧ (con-
nected with V O)

< Ghost shadow > ←− (foreground blob) ∧ (shadow)
∧ ¬ (connected with V O)

Figure 2.1: Validation rules

In conclusion, the background model remains unchanged for those points that
belong to detected V Os or their shadow. Instead, points belonging to a ghost or
ghost shadow are considered potential background points and their background
model is updated by use of the statistic function.
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2.3 Shadow detection

By shadow detection we mean the process of classification of foreground pixels
as “shadow points” based on their appearance with respect to the reference frame,
the background. The shadow detection algorithm we have defined in Sakbot aims
to prevent moving cast shadows being misclassified as moving objects (or parts of
them), thus improving the background update and reducing the undersegmentation
problem. The major problem is how to distinguish between moving cast shadows
and moving object points. In fact, points belonging to both moving objects and
shadows are detected by background subtraction by means of Eq. 2.4. To this
aim, we analyze pixels in the Hue-Saturation-Value (HSV) color space. The main
reason is that the HSV color space explicitly separates chromaticity and luminosity
and has proved easier than the RGB space to set a mathematical formulation for
shadow detection.

For each pixel belonging to the objects resulting from the segmentation step,
we check if it is a shadow according to the following considerations. First, if a
shadow is cast on a background, the hue component changes, but within a certain
limit. In addition, we considered also the saturation component, which was also
proven experimentally to change within a certain limit. The difference in saturation
must be an absolute difference, while the difference in hue is an angular difference.

We define a shadow mask SP t for each point p resulting from motion segmen-
tation based on the following three conditions:

SP t(p) =


1 if

α ≤ It(p).V
Bt(p).V ≤ β∧

|It(p).S −Bt(p).S| ≤ τS∧
DH ≤ τH

; α ∈ [0, 1], β ∈ [0, 1]

0 otherwise
(2.5)

where the .H denotes the hue component of a vector in the HSV space and is
computed as:

Dt
H(p) = min( |It(p).H −Bt(p).H|, 360− |It(p).H −Bt(p).H| ) (2.6)

The lower bound α is used to define a maximum value for the darkening effect of
shadows on the background, and is approximately proportional to the light source
intensity. Instead the upper bound β prevents the system from identifying as shad-
ows those points where the background was darkened too little with respect to the
expected effect of shadows. Approximated values for these parameters are also
available based on empirical dependence on scene luminance parameters such as
the average image luminance and gradient which can be measured directly. A sen-
sitivity analysis for α, β, τH and τS is reported in [25]. A detailed comparison of
this method with others proposed in the literature is reported in [10].

Fig. 2.2 shows the efficacy of the shadow removal system. Fig. 2.2(a) shows
the input frame, Fig. 2.2(b) and Fig. 2.2(c) report the silhouette of the foreground
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Figure 2.2: Comparison of the results achieved by preserving or removing shadows: (a)
is the input frame, (b) the extracted V O by including shadows and (c) that obtained by
removing shadows.

object without or with shadow suppression, respectively. The empirically deter-
mined parameters used in our experiments are reported in Table 2.2.

Parameter Description Value
∆t Frame Subsampling factor for the background update 10
n Number of past values stored for the background statistic 7
TL Low threshold for the background difference 15
TH High threshold for the object validation 40
TA Area threshold for the object validation 40

Shadow parameters
α Low Value threshold 0.77
β High Value threshold 0.97
τH Hue threshold 120
τS Saturation threshold 0.3

Table 2.2: Empirically determined parameters

2.4 Conclusions

In this chapter the first step of a traditional video surveillance system has been de-
scribed. In particular, a motion detection based on a background suppression tech-
nique is proposed in order to segment the foreground pixels in a video captured
by a fixed camera. The Sakbot approach here proposed estimates the background
image with a median function, extracts the foreground image by means of a dis-
tance function thresholded with an hysteresis. Additional functionalities have been
added in order to detect shadow regions and ghosts, i.e. wrong foreground regions
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Shadow Parameters
Figure α β τS τH

b 0,97 0,77 0,3 120
d 0,97 0,77 0,3 120
e 0,97 0,70 0,3 120
f 0,97 0,60 0,3 180

Figure 2.3: Results of the shadow removal algorithm obtained with different parameters. a)
and c) are the input frames, while b), d), e), and f) are the outputs of the shadow detector:
white pixels correspond to shadows.

due to the inclusion into the background of previously still objects. The good per-
formance, both in term of computational cost and efficacy, allow this module to be
used as a first step for real time indoor and outdoor surveillance. Besides a fixed
camera, requirements of Sakbot are almost constant illumination condition and a
“still” background: waving leafs, flags, or clouds can seriously jeopardize the right
working of the system.



Chapter 3

Pan Tilt Cameras

3.1 Introduction

This chapter describes a solution of advanced video surveillance for moving people
segmentation from a Pan Tilt moving camera. The method is designed to work in
real time for creating a mosaic image of the whole scene (by registering overlapped
images provided by successive frames of the active camera) and to detect moving
people very quickly.

We propose a new method for fast ego-motion computation based on the so-
called direction histograms. The method works with an uncalibrated camera that
moves with an unknown path and it is based on the compensation of the camera
motion (i.e., the ego-motion) to create the mosaic image and on the frame differ-
encing to extract moving objects. Successive steps eliminate the noise and extract
the complete shape of the moving objects in order to exploit a tracking algorithm.

3.2 Background mosaiking

Our approach for moving object segmentation from moving camera consists in two
basic steps: first, the ego-motion is estimated and compensated to build a mosaic
image and, second, frame differencing and post-processing are applied to extract
the single moving objects.

The motion vectors of the current frame are extracted using a pyramidal imple-
mentation of the Lucas-Kanade algorithm (Fig. 3.1(a)). Then, they are clustered
to find the dominant motion, that corresponds to the ego-motion assuming that the
background is dominant over the moving objects.

The clustering is performed with an innovative and fast process. It can be
demonstrated that, for small pan and tilt angles the camera motion model can be
approximated with a pure translational model. With this hypothesis, a direction
histogram containing all the directions of the extracted motion vectors is built (see
Fig. 3.2(a)).
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(a) Motion vectors with the Lucas-Kanade al-
gorithm

(b) Clustered motion vectors

Figure 3.1: Example of extraction and clustering of the motion vectors

Let −→mv(x, y) = (ρ(x, y), α(x, y)) be the motion vector computed at the co-
ordinate (x, y), where ρ and α are the magnitude and the angle of the vectors
expressed using the polar coordinates. We define the direction histogram DH(β)
as in Equation 3.1.

DH(β) = #
{−→mv(x, y)|α(x, y) = β

}
(3.1)

with β ranging from 0 to 2π. A 1-D Gaussian filter G(µ, σ) centered on the his-
togram peak µ is applied on the histogram to eliminate motions different from the
dominant one as in Equation 3.2.

D̃H(β) = DH(β) ·G(µ, σ) (3.2)

where µ = arg max
β

DH(β) and σ is a parameter set to 1 for most of the experi-

ments.
The resulting histogram D̃H(β) of Equation 3.2 (shown, for instance, in Fig.

3.2(b)) allows to divide the motion vectors into two groups, one due to the camera
motion (in cyan in Fig. 3.1(b)) and one due to moving objects (in red in Fig.
3.1(b)), and to compute the direction α and amplitude ρ of the ego-motion by
averaging the vectors retained by the Guassian filter as in Equation 3.3.

α = arg max
β

D̃H(β) ; ρ =

∑
ρ∈R

ρ

|R|
(3.3)

where R =
{

ρ(x, y)|D̃H (α(x, y)) 6= 0
}

.
This approach, though intuitive and simple, has proven to act very well, given

that the above-mentioned hypothesis holds. For example, Fig. 3.3 reports the result
in the case of a person moving with motion concordant with the camera. It is worth



3.2 Background mosaiking 35

(a) Direction histogram

(b) Filtered direction histogram

Figure 3.2: Direction histograms before and after the application of gaussian filter

noting that the direction histogram (Fig. 3.3(a)) contains two peaks corresponding
to the ego-motion and the person, respectively. However, Fig. 3.3(b) shows that,
though some errors are present, accuracy is still acceptable.

Once the ego-motion is estimated, the current frame is registered (assuming a
translational motion model) by compensating for the camera motion given by the
vector (ρ, α). The difference in the results performing frame differencing before
and after the compensation is shown in Fig. 3.4. Moving pixels are indicated in
black.

As evident in Fig. 3.4(b), the result provided by frame differencing are still far
from being optimal, for both the noise due to imprecise image registration and the
ghost of the moving objects. For this reason, post-processing steps must be used.
Noise and small areas are removed by morphological operations, whereas ghosts
are eliminated by merging information provided by a connected-components anal-
ysis and by a Canny edge detector: only edges with at least one point (in the 3x3
neighborhood) detected as moving are retained. Fig. 3.5(a) shows an example of
retained edges.

Based on these information, the single moving objects are located. Their shape,
however, is imprecisely extracted. Since the performance of the tracking algorithm
heavily depends on the precision of the object’s shape, a successive step is re-
quired. Since standard background suppression techniques are not suitable with
our requirements (unknown path, uncalibrated camera, and real-time constraints),
we employ a variant of the classical active contours, in which the energy is ob-
tained with the following equation:

Ei = Econt,i +
Ecurv,i

2
+ Edist,i (3.4)

Given p1, ..., pn a discrete representation of the contour/shape to be modelled,
Econt,i represents the contour continuity energy and is set to:

Econt,i =
∣∣d− |pi − pi−1|

∣∣ (3.5)
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(a) Direction histogram

(b) Motion vectors with LK

Figure 3.3: Result of the motion vector clustering in the case of a person moving in the
same direction of the camera.

where d is the average distance between each consecutive pair of points. Minimiz-
ing this energy means to have the points more equidistant.

Ecurv,i is the contour curvature energy (the smoother the contour is, the lower
the energy) and is defined as:

Ecurv,i = ||pi−1 − 2pi + pi+1||2 (3.6)

As external energy, we modify the original proposal by considering the im-
age obtained by applying the Distance transform to the image containing the edges
retained by the post-processing. Examples of input edge image, external energy
image and resulting snake are reported in Fig. 3.5. Finally, contour filling is em-
ployed to obtained a rough segmentation of the person’s shape to be provided to
the appearance-based probabilistic tracking proposed in [38], that is meant to be
robust to occlusions.

Final mosaic image is constructed by superimposing the registered image on
the mosaic and applying a simple alpha blending algorithm. Moreover, moving
objects are not pasted onto the mosaic.

Once moving people are detected the system allows to select a single object
(hoping it is a person) to be followed, by moving the camera to keep him framed.
In the current implementation of the system the “youngest” object(in the sense of
that tracked by less time) in the scene is followed until he is visible. When he
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(a) Without compensation (b) With compensation

Figure 3.4: Frame differencing (a) without and (b) with ego-motion compensation

(a) Edges (b) Energy (c) Snakes

Figure 3.5: Active contours: input edge image, external energy image and the resulting
snake

exits from the area the camera either follows the next “youngest” object, if any, or
goes to a predefined position. Person following is achieved by moving the camera
towards the person as soon as he approaches the limit of the current field of view.

3.3 Experimental Results

We carried out several tests to check the performances of the described system. As
described in Section 3.2, we implemented and tested a dynamic mosaicing algo-
rithm able to extract the foreground region on a moving (Pan-Tilt-Zoom) camera.
This evaluation has been carried out by means of both qualitative and quantitative
analysis. For qualitative analysis, a large set of videos has been taken with different
illumination conditions, different number of people (from none to 5-6 simultane-
ously moving people), and different movements of the camera (only pan, only tilt,
both pan and tilt). This analysis has demonstrated that, if the hypotheses hold, the
system produces very good mosaic images, like those shown in Fig. 3.6. The only
distortions appear at the top of the image where they do not affect moving object
segmentation. Mosaic images have been also evaluated using a quantitative (i.e.,
objective) measure such as the PSNR. For example, the PSNR of the mosaic im-
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ages reported in Fig. 3.6 with respect to ground truths (generated by exhaustively
trying all the possible displacements and choosing that minimizing the error) is
40.82 dB.

Figure 3.6: An example of mosaic image.

Figure 3.7: Snapshots from a live sequence with person following.

Fig. 3.7 shows a sequence reporting some snapshots of the results for object
(person) following. The red bounding box identifies the person followed, while
green ones identify other moving objects. The drawings on the bottom right corner
of each image show the actual movement of the camera. It is worth noting that
these results have been obtained with a completely unsupervised system working
on live camera. It is evident that there are some imprecisions: for instance, on row
2, column 3, the second person is not segmented since it is very dark; on row 3,
column 2, shadows are connected to the moving person; erroneous moving objects
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are detected on the column in the last row, columns 3 and 4. In particular, the last
snapshot reports a wrong segmentation due to the presence, in the background, of
much texture and to the closeup of the scene.

From the computational point of view, the system works in real time with a
standard PC at 3Ghz, with an average frame rate from live camera of about 5 fps,
including also the person following task and the following face detection. Consid-
ering that the current acquisition device releases 12.5 frames per second, we can
properly speak of “real time”.

3.4 Conclusions

The method here proposed for detection of people in videos from a moving camera
is conceived to cope with Pan and Tilt movements only, since the motion model
used is strictly translational. For zoom changes and other free camera movements
a more complex motion model must be introduced. Despite that, pan-tilt cameras
are wildly used for surveillance, so this approach assumes an outstanding interest.
Like the Sakbot system, it requires some environmental conditions in order to be
applied, such as a “still” background and slow illumination changes.
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Chapter 4

Moving Cameras

4.1 Introduction

As above mentioned, moving object segmentation in videos is a key process in
video-surveillance applications. Several difficulties associated to this task can
arise if there is a relative motion of the observer with respect to the objects and
background. When the background is stationary and videos are acquired by fixed
cameras, moving object detection can be faced thorugh background suppression
or frame differencing (see Chapter 2). Even when background is moving with a
known path, for instance when the camera’s motion is constrained (for example
in surveillance Pan-Tilt-Zoom cameras with a programmed camera path) modified
methods of background suppression and frame differencing have been proposed
(see Chapter 3). Instead, the segmentation of moving objects becomes more criti-
cal when the video is acquired by a free moving camera with an unconstrained and
a priori unknown motion. More in general, we consider the framework of videos
with moving foreground objects on a moving background. In this case, segmen-
tation cannot be accomplished computing visual motion only, but other features
must be exploited such as color, shape, texture and so on. In addition, our aim is
to develop a system able to compute dominant motions in real-time, suitable for
applications of indoor/outdoor surveillance.

Many works propose the integration of multiple features for detecting and
tracking moving objects on video with a moving background. Among them, a work
of Gelgon and Bouthemy [39] proposes an approach based on a color segmenta-
tion followed by a motion-based region merging. The authors adopt the affine
motion models and the merging of regions is performed with Markov Random
Fields (MRF, hereafter). An implicit tracking of the objects is also included, and
it is obtained with the initialization of the MRF according with a label prediction.
This approach is based on two basic assumptions on the objects: they must have
different colors (the segmentation of the scene in objects is based only on color
information) and rigid motion (expressible with affine equations). This solution
produces good results, but the computational complexity is too high to allow real-
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time implementation: authors in [39] state to be able to process a frame every 80
seconds1.

In this chapter we present an approach inspired by the one of [39] substan-
tially modified in order to abate the computational time. To this aim our algorithm
assumes some simplifications with respect to [39] but also some important new fea-
tures. The basic simplification is the hypothesis of a translational motion model in-
stead of an affine one: this hypothesis limits the applicability to the (very frequent)
cases of pure translational movements or that can be approximated as translational
between two consecutive frames.

However we have introduced some important novelties:

• the “Partitioned Region Matching”: we propose a new motion estimation
algorithm based on region matching, but emphasizing advantages of both
region matching and block matching;

• a measure of “motion reliability”: we use in the MRF model a factor which
takes into account the reliability of the motion estimation phase;

• a new minimization algorithm of the MRF function that approximates the
classical approach with a search based on arcs instead that on nodes. This
method abates the computational costs, by preserving most of the efficacy of
the algorithm. In this way we have defined a technique for very fast segmen-
tation reaching up to 10 frames per second2 in frames of 100x100 pixels.

4.2 Related Work

Several researchers have approached the problem of motion detection on video
acquired by moving camera. Table 4.1 tries to summarize the most relevant contri-
butions to this field reported in the literature. We tried to classify them by means
of several features such as whether they explicitly compute camera motion or not,
which motion model (translational, affine, quadratic, etc.) is assumed, which fea-
tures are used to segment the video (visual features as color, or motion, or both),
and whether they achieve real-time performance or not.

In practice, we classify the approaches by means of eight factors (see Table
4.1):
1) Type of camera motion (II8):

1On a ULTRASPARC Machine
2On a dual Pentium III 1000 MHz with 512 MB of RAM
3U: unconstrained, C: constrained, F:Fixed
4Feature of the first and basic segmentation; VF: Visual features, M: motion, Mix: mixed
5SPHS: Real time on a special purpose hardware system.
6E: Estimation, D: Detection; OF: Optical flow, FD: frame difference, BGS: background suppres-

sion, BC: block correlation
7Only if motion estimation is adopted; A: Affine, T: Translational, 3D: six 3D-parameters, P:

perspective
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Table 4.1: A review of related work.



46 Moving Cameras

The first assumption copes with the camera’s motion model, namely:

• fixed camera (camera not in motion);

• constrained moving camera (e.g.: pan-tilt camera, camera with a fixed path);

• unconstrained moving camera (when the motion of the camera is a priori
unknown).

In the paper we analyze only approaches with a relative motion between camera
(i.e. the observer) and the background, and in particular videos acquired with un-
constrained moving camera or with an unconstrained moving background.
2) Acquisition system (III): It refers to the number and the type of cameras involved
in the acquisition process and the model of the scene.

• 2D system (single camera);

• 3D system with stereoscopic vision (two normal cameras);

• 3D system (e.g., with a normal camera and a range camera.

Our proposal assumes a 2D system with a single moving camera.
3) Computation of camera motion (IV and V):

The camera motion can be estimated through the evaluation of the dominant
motion with different techniques and models. Some approaches (labeled with
“yes” in column IV) exploit camera motion computation to produce compensated
videos from original ones in order to apply algorithms developed for fixed cam-
era. Other approaches do not distinguish camera motion from the motions of fore-
ground objects.
4) Motion of objects (VI and VII):
A very relevant difference among proposals is the adoption of either a motion de-
tection or a motion estimation approach. In the former, each pixel/region is simply
classified as “fixed” or “in motion”, while with motion estimation a quantitative
measure of motion is also provided.
5) Motion model (V and VII):
To describe the motion of a pixel in an image, the two components (along axis x and
y) of the shift vector are enough. Instead, the motion of a region is more complex
and could require more parameters to describe it. In this case, it is possible to
adopt different models to represent the motion of the regions: translational, affine,
quadratic, etc ... The more the parameters, the higher the quality of the estimation
is, but, at the same time, the more complex and computationally expensive the
algorithm becomes.
6) Segmentation features (VIII):
The extraction of moving objects from the background is performed through im-
age segmentation exploiting features. Thus, approaches are characterized by the
feature used as:

8Roman numbers between brackets are referred to the columns of the Table 4.1
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• segmentation based on visual features (e.g. color, edge, texture)

• segmentation based on motion

• mixed segmentation (motion and visual features together)

In the first case, the objects are separated independently from their motion; this
typically brings to an over-segmentation. For example, a segmentation based only
on color information can separate a person with shirt and pants of different colors
into several objects. In this case the use of another feature (i.e., motion) helps
in merging different regions of the same object. Another possible approach is to
compute the segmentation by considering only the motion information, but in this
case the aperture problem can be critical, as in the case of non-textured moving
objects. The most reliable solution to this problem is, typically, to implement a
segmentation that takes into account visual features and motion at the same time in
a mixed segmentation.
7) Tracking (IX):
Not all the approaches include a tracking phase that allows the system to trace
objects’ positions over time. In some cases an implicit tracking is integrated in the
motion segmentation process (e.g., in the system proposed in [39] the tracking is
performed through the initialization of the labels based on prediction: objects that
confirm the prediction, maintain the same label over time).
8) Real time implementation (X):
As stated before, our aim is to meet real-time requirements9. For this reason, we are
interested in evaluating whether an algorithm works in real-time or not. In Table
4.1 we reported only if the time requirements are considered and if the real-time
constraints are satisfied or not (as stated by the respective authors).

In conclusion, we can group the proposals into three classes:

a) based on camera motion computation: these methods compute camera mo-
tion and, after its compensation, they apply an algorithm defined for fixed-
camera; (an example is the proposal of Chapter 3)

b) based on motion segmentation: the objects are mainly segmented by using
the motion vector computed at pixel level;

c) based on region merging with motion: the objects are obtained with a seg-
mentation based on visual features, and next merged on motion parameters
computed on a region-level.

Among approaches based on the computation of the camera motion followed
by the application of a fixed-camera technique, some of them use frame differ-
encing ( [42, 44, 48, 53, 60, 61]) and some other uses background suppression with

9We use the term frame-rate to say 25/30fps (European/American acquisition standards) and the
term real-time as a more “soft” constraint that could be considered acceptable for many applications
(for instance in surveillance systems 10 fps are often assumed as a real-time).
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background obtained through mosaicing techniques ( [45] and [62]). Refer also
to [72] for background mosaicing construction and to [73] for a comparison of
approaches to camera motion computation.

Systems described in [43,46,51,52,59,64,68,69] belong to class b). The algo-
rithm used for segmentation is the characterizing factor for these works. Also the
proposals reported in [40] and [55] could be included into this class; unlike the oth-
ers, they use motion and some visual features simultaneously in the segmentation
process.

The approaches described in [41,50,67] belongs to the third class, that use color
as visual feature for initial segmentation, [39] that assumes a possible exploitation
of gray-level, texture or color, [63] that makes use of edges. In [58] and [66],
the authors present only the merge phase and suppose the existence of a previous
region segmentation step. Our proposal belongs to this class.

Finally, [47] and [49] are two mixed approaches: [47] performs an initial cam-
era motion computation to remove camera motion similarly to the approaches of
class a) and obtains the region in motion by frame differencing. Then, to sepa-
rate single objects, it exploits a motion based segmentation only with a “split and
merge” algorithm on the regions extracted by frame differencing. [49] computes
camera motion for compensation and then uses an approach similar to [39], com-
posed by a color segmentation process followed by motion based region merging.

Our proposal (the one labeled with [71] in Table 4.1) follows the same guide-
lines of [39] aiming to a real time implementation with general-purpose platforms.
By the analysis of the Table 4.1, we could note that few proposals take into ac-
count the time requirements; among these, many use a special purpose hardware
[42,56,59,68], or a manual initialization [66] or are oriented to constrained motion
model [45, 74] or a specific application (as [48] for periodic model). [53] and [64]
are general purpose systems, but they don’t assure the extraction of the entire mov-
ing objects, because they make use only of the motion information in the segmen-
tation process.

4.3 Description of the proposed approach

The approach can be summarized as follows: each frame of the sequence is seg-
mented into regions by using color, with the assumption that each region contains
only one (or part of one) object. For this task a region growing algorithm is ap-
plied. According with color segmentation, a Spatial Region Graph (SRG), also
called adjacency graph, is created. In SRGs, nodes represent regions, whereas
arcs represent topological adjacencies. We consider an attributed graph: area size,
the coordinate of the bounding-box and the centroid’s position are associated with
each node. Then, motion estimation is computed with the adoption of the transla-
tional motion model. To accomplish this task there are basically two ways: the first
requires pixel-level motion estimation (e.g., with optical flow or block matching)
followed by a statistical function (e.g., mean or mode) over regions; the second
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(adopted in our system) directly exploits computation of the region-level motion
vectors through region matching (and in particular with Partitioned Region Match-
ing, described in the following). In addition to motion vector a measure of mo-
tion reliability is defined and computed for each region, based on the presence of
“strong” gradients (that allows correct estimation of the motion) and a good match.
Computed information are then stored in the spatial graph. Then SRG is the start-
ing point of a Markov Random Field (MRF) framework, where regions are merged
according with an energy function influenced by the motion parameters (velocity
and reliability). The largest region is assumed as background and its motion as the
motion of the camera, while other regions are classified as moving objects. Tempo-
ral continuity of motion field is supposed to perform a prediction of the next frame.
This prediction is used to initialize the region-level MRF framework during the
analysis of the next frame, with two advantages: the reduction of merging phase
duration and the implicit tracking of the objects.

In Fig. 4.1 the complete algorithm is schematically reported; on the left are
presented the functional blocks and on the right the partial outputs obtained with
a synthetic sequence are shown. Fig. 4.1.b and Fig. 4.1.c are the color segmen-
tation output and the spatial region graph, respectively. Fig.4.1.d and Fig. 4.1.e
describe the segmented regions and the graph after motion computation and MRF
estimation, respectively. Finally Fig. 4.1.f shows detected moving objects.

As above-mentioned, our proposal has been initially inspired by the work of
[39], and initial description reported in [75]. According with that, we mix color
feature and motion and exploit MRF to optimize the spatial region graph in order
to extract objects as regions with similar motion parameters. Nevertheless, many
substantial differences have been introduced in all sub-tasks and in particular in:

• Color segmentation: in accordance with [39] we believe that color is the
most salient feature to be exploited. In [39] color segmentation is performed
at the first frame only and then refined frame by frame by means of the
MRF. Instead, focusing on speed, MRF optimization has been substituted by
a color (re-)segmentation at each frame. In particular in our system we apply
a region growing algorithm to every frame. This last solution has proved
to be less accurate but much faster. Indeed, the construction of the pixel
level MRF prediction has been tested, as defined in [39], and has resulted
useless if color segmentation on every frames is adopted; thus, the pixel
level prediction and the optimization of the segmentation with MRF are not
implemented in our version;

• Motion model and estimation: we have adopted the translational motion
model, less realistic than the affine one, but characterized by a much lower
complexity. However, when camera and objects are moving slowly the sim-
plification results acceptable. Correlation based algorithms (such as block
matching) could be sufficient for motion estimation; in particular, taking ad-
vantage from the presence of a region segmentation, we propose an original
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Figure 4.1: The block diagram of the proposal
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region matching method, the Partitioned Region Matching (PRM) (see sec-
tion 4.3.2). Lastly, we define a motion reliability term exploited in MRF;

• MRF optimization: the energy function used is changed due to the different
motion model adopted. In addition, section 5 describes a new optimized
algorithm that allows a real time processing.

4.3.1 Color segmentation

Color segmentation is implemented with a region growing algorithm. Since our
goal is to detect moving objects, we work principally on an object-level and a
perfect color segmentation at pixel level is not required. Thus, we defined a simple
iterative approach inspired to [76], with suitable modifications. At each iteration
an unlabelled point (or seed) is extracted from the image: a new label is assigned
in order to create a region with a single pixel. Then, the 4-connected neighbor
points are evaluated. A point x is merged to the current region S if it is unlabelled
and if it has a color close enough to the mean color of the region. To check if the
sum of the absolute difference between xcolor components of the point x and the
correspondent mean values evaluated on the current region is lower than a fixed
threshold α, we use the following equation:

dist(x, S) = |xR −RS |+ |xG −GS |+ |xB −BS | ≤ α (4.1)

where xR, xG, xB are the three RGB color components of the evaluated point x,
RS , GS , BS the mean values of RGB color components computed over the region
S and α a fixed threshold.

A possible limitation of this implementation is the dependency on initial seeds
and scanning order. Only for computational reasons, seeds are not extracted with
a particular algorithm that could extrapolate significant points (e.g., points of local
minimum/maximum of the intensity) but the first unlabeled pixel starting from the
top-left corner of the image is selected.

To reduce segmentation dependency on the visiting order of the neighbor pixels
we have adopted a propagative search with the following strategy. First, the pixels
adjacent to the seed are pushed into a stack A. Then, we pop one by one pixels from
stack A and insert their neighbors into a stack B. We evaluate pixels from stack B
and push new pixels in stack A. In this way the regions grow on all directions with
homogeneity.

The presence of strong edges or noise implies the creation of little regions,
some of that with only one pixel. To overcome this problem we have introduced
a second threshold β: regions with a dimension lower than β are merged with an
adjacent one. Thresholds α and β are less critical than expected, but depend on
the tradeoff between precision and speed. If α or β are “low” more regions are
created. Nonetheless, the following MRF phase will solve a possible initial over-
segmentation.
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4.3.2 Partitioned Region Matching (PRM)

The aim of the motion estimation phase is the computation of a motion vector for
each region produced with color segmentation. Several variants of block matching
are available in the literature (e.g. [77] and [78]) to evaluate the motion of a block
with a translational model; moreover, a statistical function is needed to integrate
the blocks motion measures over the whole region. When a previous color seg-
mentation is available, as in this case, region-matching techniques produce often
better results than block matching in a relative short time. To this aim we present
here a variation of the classic region matching.

Differently from the block matching algorithms, that confront fixed sized blocks,
region matching exploits the whole regions extracted with segmentation as com-
paring patterns and a function defined over the entire regions as matching value
(i.e. distortion rate). For example, we could adopt the measure expressed in Eq.
4.2, that is an adapted version of the classical Sum of Absolute Differences (SAD)
over a region:

SADR(v) =
∑

(x,y)∈R

 ∑
i∈{R,G,B}

|It(x, y)i − It+1(x + vx, y + vy)i|

 (4.2)

where It(x, y)i is the ith color component of the point of the image I at the (x,y)
coordinates at the frame tand v = (vx, vy) is the displacement to evaluate.

The most important advantage of region matching with respect to block match-
ing is the possibility to estimate motion of uniform regions without texture, by us-
ing the shape. In fact, the presence of at least two not-parallel gradients is required
to correctly compute a motion vector (also known as the “aperture problem”, [79]).
The adoption of regions in substitution of blocks makes more probable that the
previous requirement will be satisfied, both for the bigger size and for the presence
of the object border inside the region. At the same time, problems with region
matching based on Eq. 4.2 can arise when the motion is not strictly translational
or when the shape varies over time (for example in presence of occlusions). If the
affine model is assumed, the Eq. 4.2 can be modified as follows:

SAD′
R(v) =

∑
(x,y)∈R

(∑
i∈{R,G,B} |I(x, y)i − I(x̃, ỹ)i|

)
x̃ = a1(x− xR

G) + a2(y − yR
G) + a3

ỹ = a4(x− xR
G) + a5(y − yR

G) + a6

(4.3)

where (xR
G,yR

G) are the centroid coordinates of the region R and a1...a6 are the six
affine motion parameters to evaluate. The introduction of six parameters instead
of two makes more complex and heavy the motion estimation. In presence of
occlusions, the variation of the occluded object’s shape can introduce errors. To
reduce this problem, we define a new matching criterion that we call Partitioned
Region Matching (PRM in the following), that ensembles features of both block
and region matching.
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PRM is defined as follows:

1) a region R is partitioned in a number n of disjoint sub-regions SRk, so that

R =
n⋃

k=1

SRk and SRi ∩ SRj = ∅|i, j ∈ 1...n (4.4)

2) the integer, finite set V of shifts in all directions is defined as follows:

V = {Vj = (vxj , vyj)|vxj , vyj ∈ [−s,+s]} (4.5)

where s is the maximum shift that the system can evaluate; please note that
this integer set does not allow sub-pixel accuracy in motion estimation; once
again, we prefer to limit the complexity of the system to be able to meet
real-time constraints;

3) for each sub-region SRk the function SADSRk(vj) is evaluated, according
with Eq. 4.2; the motion vector vk , (vk

x, vk
y ) of the sub-region SRk is

assumed equal to:

vk = arg min
vj∈V

{SADSRk(vj)} (4.6)

4) a probability function P (v) is associated to the region and it is computed
as the product of the a posteriori probability (i.e., number of occurrences of
each motion vector) with the a priori probability.

P (v) =

n∑
k=1

δ(v,vk)

n · Ppriori(v)
z

(4.7)

where

δ(v,vk) =
{

1 if v = vk

0 if v 6= vk (4.8)

and z is the normalization factor. The a priori probability could be computed
taking into account the motion in the previous frame, physical constraints,
and knowledge on the scene or application. To reduce computational com-
plexity, in the experiments reported in this paper the a priori probability has
been set identically to 1

|V| . In this case, P (v) is computed simply as

P (v) =

n∑
k=1

δ(v,vk)

n
(4.9)

5) finally, the motion vector MVR = (MV xR,MV yR) of the whole region R
is assumed to be the vector vj that maximizes P (v):

MVR = arg max
vj∈V

{P (vj)} (4.10)

Using Eq. 4.9 to compute the probability values, the motion vector MVR

results to be the mode of the shift vectors vk.
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However, we must define how to compute the sub-regions as in 1). The region
partitioning should present some characteristics: a) the sub-regions SRk should
not be too small, (e.g. 8x8, 16x16, ), otherwise PRM turns into block matching;
b) the sub-regions SRk should have almost the same area; in this manner all the
SADSR are comparable; otherwise, a suitable factor coping with different area
should be included in the a posteriori probability; c) the edges border should be
fragmented into more than one part, to reduce the influence of occlusions.

The region partitioning adopted in this work, compatible with the previous
criteria, is the following: let BBR be the bounding-box (or extent) of the region
R and define a partitioning window WL of LxL pixels. For instance, L could be
8,16, so that Area(WL)� Area(BBR). Thus, BBR is decomposed in windowed
bounding-blocks WBBi, i.e. sub-squares LxL as large as the partitioning window
is (BBR =

⋃
i

WBBi). An example is in Fig. 4.2.g. The sub-regions SRk are the

not null intersections between the windowed bounding blocks and the region (see

Fig. 4.2.h): R =
n⋃

k=1

SRk, SRk = WBBk ∩R, SRk 6= ∅.

In this manner, the criteria a) and c) are always satisfied, while the b) criterium
is not, because some border sub-regions could be smaller than central ones. In spite
of this, the central sub-regions give the same contribution in the statistical function
of the smaller border sub-regions. This means to assume that the border motion is
more significant than the central one.

The defined PRM reduces the problems of occlusion typical of region match-
ing, since occlusions affect only a limited number of sub-regions that are not sig-
nificant due to the equations 4.7, 4.9, and 4.10; moreover it resolves the drawback
of motion vector locality of block matching, working on larger patterns.

To better understand and appreciate the power of this solution we can consider
the two consecutive frames in Fig. 4.2 (a and b); we suppose that only R1 is
in motion, while the other regions are fixed. To compute motion of R6 (i.e., the
background), we search the best match between the second and the first frame. In
Fig. 4.2 (c) and (d) are represented two possible matches, obtained with (vx, vy) =
(0, 0) and (vx, vy) = (1, 1), respectively. Obviously, the first is the correct match;
Fig. 4.2 (f) shows that is also the case with the maximum number of matching
pixels (the pattern extracted from the second frame covers 88 pixel of R6 and 12 of
R1 in the first frame), but the SADR, if computed over the whole region, is smaller
in the second case (see Fig. 4.2 (e)), where the pixel of the region R6 covered
are only 68. Therefore, a classical region matching based on SADR fails. This
problem often occurs in real sequences, when the foreground moving objects have
very different colors from the background. In this case the background’s motion
may be wrongly evaluated as equal to the motion of a foreground occluded object.
With PRM, instead, we can estimate the correct motion vector. The partitioning of
R6 is made as Fig. 4.2 (g): for graphical reasons the size of each window is 4x4
pixels, but in the implemented system partitioning windows are larger (e.g., L=8,
16, ...). The entire region results segmented in ten sub-regions. In Fig. 4.2 (h) we
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Figure 4.2: Example of partitioned region matching (PRM). (a)(b) two consecutive frames
where R1 is the only moving object, (c)(d) two possible matches of R6, obtained with
(vx, vy) = (0, 0) and (vx, vy) = (1, 1) respectively, (e)(f) SADR values with Eq. 4.2, the
columns Ri in (f) are the number of pixel matching R6 − Ri that must weighted with the
correspondent distance d in color (e.g., first row: 6210 = 22·235+12·55+7·25+1·205),
(g) parts creation for PRM; (h) best match with PRM, (i) probabilities of the motion vectors
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can see that only three of ten sub-regions of the R6 are affected by the occlusion of
R1, while most of sub-regions can correctly estimate the motion vector. Fig. 4.2
(i) shows the probabilities P (vx, vy) associated to the motion vectors (vx, vy): the
vector with the maximum value is the right: (vx, vy) = (0, 0).

For each region R we also define a motion reliability as:

ρR =

∑
(x,y)∈R

[ ∑
i∈{R,G,B}

(∣∣∣∂I(x,y)i

∂x

∣∣∣+ ∣∣∣∂I(x,y)i

∂y

∣∣∣)]
SADR(MVR) + 1

(4.11)

ρR takes into account two factors: the gradient in the color image and the
goodness of the best match found, evaluated as the SAD (obtained with a shift of
MV) increased by 1 to prevent division by 0. If a region presents a low texture,
the choice of the best match could be ambiguous, therefore the reliability of the
motion estimation is low too. Reliability is low also if the best match presents an
high distortion and thus an high SAD (e.g., in presence of occlusions and defor-
mations).

Moreover, the motion reliability value resolves another problem: region match-
ing (as all the other motion estimation techniques) can not evaluate the motion in
the image border. If a region has a bounding-box entirely contained in the image
border (large as s of Eq. 4.5) , we set ρR to 0.

4.3.3 Region level MRF

The Markov Random Fields result very powerful to resolve segmentations and
classifications. In this kind of problem, the undirected graph is the typical repre-
sentation of the MRFs, with nodes corresponding to a set of variables and the arcs
reporting their interactions. The nodes contain both variables based on the observa-
tions of the system modeled (e.g., color, motion, etc... ) and the output values (e.g.,
the labels). Moreover, a function of this variables (i.e., the energy function), is de-
fined over the whole graph. The main property of the MRFs is the independency
between the variables of nodes not connected with an arc; consequently, the energy
function could be decomposed as the sum of local terms defined over the two-site
cliques11 (i.e., couple of nodes connected with an arc). Goal of a MRF frame-
work is the minimization of the energy function and, to this aim, an optimization
algorithm should be introduced.

We use a Markov Random Field framework to merge regions with similar mo-
tion. As proposed in [39], the energy function is composed by three terms: one
based on motion (U1), one used to perform a geometrical regularization (U2), and
one based on the number of labels assigned (U3):

U(e, o) = U1(e, o) + U2(e) + U3(e) (4.12)

where e and o are respectively the labels and the observation fields.
11Hereinafter, we will refer to a two-sites clique simply with the term “clique”.
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Differently from [39], we exploit motion reliability too, including it in the en-
ergy term based on motion:

U1(e, o) =
∑

(s,t)∈Γ

V1(es, os, et, ot) (4.13)

V1(es, os, et, ot) =
{

0 es 6= et

c1 · ‖MVs,MVt‖ ·
√

ρs · ρt es = et

‖MVs,MVt‖ =
√

(MV xs −MV xt)2 + (MV ys −MV yt)2
(4.14)

where Γ is the set of two-dimensional cliques and s and t are two sites of a clique
(corresponding to regions); MV x and MV y are the two components of the mo-
tion vector, ρ is the motion reliability and c1 is a positive constant. The motion
distance is computed with Euclidean formula, while the reliability term is included
to make motion-based energy term U1 more significant than the geometrical term
in presence of high values of reliability.

In addition, we can decompose the geometrical regularization term into the
sum of local terms defined over the cliques as in [39]:

U2(e) =
∑

(s,t)∈Γ

V2(es, et) (4.15)

V2(es, et) =

{
0 es 6= et

−c2
ξs,t

ξs,t+
√

(Gs
x−Gt

x)2+(Gs
y−Gt

y)2
es = et

(4.16)

where c2 is a positive constant, ξ is the length of the shared border and G =
(Gx, Gy) is the region centroid. This term enhances the fusion of two adjacent
regions with a long shared border and a small distance between centroids.

The last term takes into account the number of labels assigned, i.e. the cardi-
nality of e (#e):

U3 = c3 ·#e (4.17)

where c3 is a positive constant.
In conclusion, the motion based term tries to keep separate regions with differ-

ent motion, geometrical term decrements the weight of motion distance if there is
a strong adjacency and U3 represents a sort of motion difference threshold under
which two regions will be merged.

The optimization of the energy function is performed with a multi-scale itera-
tive algorithm. A label and a binary stability flag (preset to “unstable”) are associ-
ated to each node; initial label is assigned according with a prediction computed on
the previous frame. Known the labels of regions in the previous frames we predict
the label of each node by computing the maximum overlapped area and imposing
motion continuity. The algorithm extracts one by one in random order the regions
with “unstable” flag and evaluates which label (taken from a set composed by the
old label, the labels of the adjacent nodes and an outlier label to allow separation
of connected regions) minimizes the energy function. The new label is assigned to
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the node, the stability flag is set to “stable” and, if the label has been changed, the
state of the adjacent nodes is set to “unstable”. When all the nodes become stable,
a compression of the graph is performed by grouping nodes with the same label
into a single label; then the algorithm is iteratively exploited on the new graph.

4.3.4 Background and moving object identification

After MRF optimization, we should obtain a final graph with each node corre-
sponding to an object (or a blob containing objects with the same motion). The
largest one is assumed to be the background. Nevertheless, assuming that all the
other regions are moving objects could be incorrect, since the background could be
separated in more parts by interposed objects. To prevent this, every region with
the same motion of the background is merged with it, even if not adjacent. To be
less sensitive to noise, we can do the same with regions that exhibit similar motion
(i.e., the Euclidean distance in the velocity space must be under a suitable thresh-
old). Remaining regions are assumed to be moving objects. If small regions are
not relevant for the application, a size threshold can be introduced.

4.4 Experimental results

The presented system has been implemented and tested on both synthetic and real
sequences12. Ground-truth tests (i.e. tests with manually segmented frames as
ground-truth) have been performed to evaluate the efficacy. Finally, a time analysis
has been carried out to study dependencies on parameters and the capability to
satisfy real-time requirements. In the following subsections we will analyze the
results obtained on different sequences.

4.4.1 “Object sequence”

“Object” sequence (Fig. 4.3) is synthetic video composed of 20 frames of 200x200
pixel each. It has been made properly to test the system and contains five objects
in strictly translational motion over a mobile background. In particular, there are:

• a red circle O1, with homogeneous color but with a vanished border. The
object is entering into the scene and its shape and size are varying on the
time; this tests the reliability of the region matching in presence of objects
that are entering/exiting from the scene;

• an ellipse O2 with a very strong texture: it represents an object that color
segmentation can not entirely extract (see Fig. 4.3) and only the motion field
can correctly reconstruct;

12The videos are available at the Imagelab Laboratory page
http://imagelab.ing.unimo.it/imagelab/benchmark.asp
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Figure 4.3: Frame 6 of object sequence: (a) original frame, (b) after color segmentation
with region growing and (c) moving objects reported on output (in this frame O5 is not in
motion).

Table 4.2: Size and centroid coordinates estimation errors on object sequence. The size
mean error of the circle is carried out only in percentage because the circle is entering on
the scene and its size is not fixed

• a blue square O3, with vanished color: darker in the bottom left with a
shadow;

• a black bar O4, with uniform color: is an ideal object for this application;

• a green triangle O5, with a transparency;

• the background: is yellow, with a weak texture, just sufficient to compute its
motion.

The output of the system confirms correctness of the approach: all the moving
objects are correctly retrieved in the whole sequence.

The output was also subjected to a ground truth analysis: see Fig. 4.4 with false
positives and false negatives at pixel-level. As it can be seen from Table 4.2 the
objects with shadows or vanishing borders have some pixels that are not correctly
segmented, but are assigned to the background; this causes the false negatives of
Fig. 4.4. The false positives at frame 10 correspond to a new region that the circle
leaves in the top-left corner of the image while is still entering (the motion of a new
region is unknown and it is assumed to be an indefinite value).

The analysis of the centroids’ coordinates is more significant for our applica-
tion, because it consents to evaluate better the efficacy of the motion estimation and
the region merging phases (rather than the color segmentation); Table 4.2 shows
that the estimation error is null for the bar and irrelevant for the other objects.
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Figure 4.4: Errors expressed in percentage of the total (in pixels) over object sequence. The
values refer to objects in motion (different from the background). Thus, false negatives are
moving objects’ points that are not detected and false positives are points of still objects
or of the background labeled as belonging to moving objects.

Figure 4.5: Frame 140 from indoor sequence: a) original frame, (b) after color segmenta-
tion with region growing, (c) moving objects reported on output. (d) Output of frame 50,
with a background’s region wrongly merged with the foreground moving object.
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Figure 4.6: Positives and negatives (as in Fig. 4.4) over the indoor sequence

Figure 4.7: Hand sequence: (a) an original frame, (b) after color segmentation, and (c)
output

4.4.2 “Indoor sequence”

Fig. 4.5 shows an original frame of an indoor video, the color segmentation, and
the final output. The camera and a person are moving in opposite directions (see
superimposed arrows).

A ground-truth analysis is performed (Fig. 4.6). The presence of false positives
between frames 41 and 61 is caused by a wrong motion estimation. The motion
of the background region at the right of the man is equal to the man’s motion and
the two regions are merged (see Fig. 4.5.d). In this case, neither standard region
matching, nor PRM can correctly compute the motion value; in fact, they can not
exploit the texture, because the region is homogeneous, nor the shape because the
area presents half border affected by the occlusion of the man and the other half
corresponding to the image border, always stationary. In the frames from 75 to
100 the person is stopped: the system works correctly, also in presence of the
unavoidable camera noise. From frame 100 to 108 the person is not completely
detected due to its initial very slow motion, and this is shown in the peak of false
negatives reported in the right graph of Fig. 4.6.
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Figure 4.8: False negatives and positives (as in Fig. 4.4) over the hand sequence

Param. of R.M. Computational time (seconds)
Size R.G. Max # Segm. + Motion Region

(α, β) Shift regions SRG estim. MRF Total
100x100 70-8 2 43 0.125 0.047 0.031 0.203
200x200 70-25 4 36 0.578 0.531 0.031 1.140
400x400 70-120 8 32 2.562 6.625 0.094 9.281
100x100 70-20 6 23 0.125 0.172 0.016 0.313
200x200 70-20 6 41 0.562 0.938 0.031 1.531
400x400 70-20 6 116 2.594 4.156 0.391 7.141

Table 4.3: Processing time dependencies from parameters. In the first three rows the pa-
rameters are scaled with the dimension, while in the other three are fixed.

4.4.3 “Hand sequence”

In hand sequence (see Fig. 4.7) a hand is moving over a desk and the camera is
in motion too. This sequence is very hard to analyze, because the background is
composed by a lot of small regions (of the mouse pad) with some large and fine-
textured ones (of the desk) in addition. Motion estimation is difficult on both:
on the small regions when the hand occludes them and on the white desk for the
absence of gradients. Fig. 4.8 reports ground truth analysis: in this case, the false
positives are some details of mouse pad connected to the hand.

4.4.4 Computational performance analysis

The system proposed on [39] produces satisfactory results in terms of accuracy of
segmentation and motion detection (as stated by the authors), but it is computa-
tionally too expensive to satisfy strict time requirements (as indicated in [39] and
in [80], they needed 80 sec for frame on a ULTRASPARC). Our initial idea was
not to develop a more reliable implementation, but to meet real-time requirements
and, and the same time, maintain acceptable results.

In this section we present a detailed time analysis that shows the cost of each
phase and their possible dependencies on application parameters. In particular:



4.4 Experimental results 63

Max shift (s) PRM times (seconds)
2 0.0438
3 0.0658
4 0.1022
5 0.1344
6 0.1804
8 0.2814
12 0.5124
15 0.7406
20 1.0606

Table 4.4: Times (in seconds) for motion estimation vs. maximum shift. Frame size:
100x100

Figure 4.9: Processing time vs. number of regions (on object sequence 200x200)
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• Color segmentation: the time necessary for this phase depends on the frame
size (see Table 4.3); instead, number of created regions and color threshold
do not affect it (see also Fig. 4.9).

• Spatial graph creation: is very fast and its time cost is negligible.

• Motion estimation: is the most critical phase, not only for its algorithmic
complexity, but also for the several factors that concur to make difficult the
computational time estimation. In fact, it depends on the frame size s, and
on the number of regions created by the color segmentation. Table 4.3 and
Table 4.4 show the execution time of motion estimation with PRM.

• Markov Random Field optimization: for this task, the frame size is obviously
not relevant, because the application works only on the graph. On the other
hand, the time occurred for energy minimization varies with the number of
regions (see Table 4.3 and Fig. 4.9). As it is possible to see, time required
for MRF increases not linearly with the number of regions. Table 4.4 shows
that PRM is affected by the maximum shift s. If we suppose not to have fast
objects (e.g., with s = 2) PRM asks for 43.8 msec for frame (it grows up to
1 sec if we shift the region up to 20 pixels).

Calling n the number of nodes of the graph, i.e. number of regions, the min-
imization algorithm proposed in section 4.3.4 has a complexity of O(n4). In fact,
each iteration analyzes all the n nodes; for each of them it computes the energy
value on the n arcs linking it with the others. If the state of the analyzed node
changes, all the other n nodes may be re-evaluated. Supposing that each node is
evaluated n times, we obtain a complexity of O(n3). Then a multi-scale optimiza-
tion is performed, that consists, in the worst case, of n iterations.

As indicated by the total time costs in Table 4.3 and Fig. 4.9, we are far from
satisfying real time constraints. In fact, although downscaling the frame size can
allow very fast computation of region growing and motion estimation, the MRF
optimization requires too high computational times (consider that region growing
usually produce almost 30 regions). For this reason, in the next section we propose
an innovative algorithm of optimization based on arcs instead of nodes character-
ized by a quadratic complexity.

4.5 Arc based optimization

4.5.1 Energy function

First, the energy function previously presented has been slightly modified; in par-
ticular, the term U3 is now defined as the number of broken arcs (i.e. pairs of
regions geometrically adjacent but with different labels). The third energy term is,
thus, expressed in a form similar to the other two terms:
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U3(e) = c3

∑
(s,t)∈Γ

V3(es, et) (4.18)

V3(es, et) =
{

1 es 6= et

0 es = et
(4.19)

where c3 is a positive constant.
The weak proportionality between number of labels and broken arcs justifies

this change. The global energy function can be now entirely decomposed into the
sum of local terms defined over cliques:

U(e, o) =
∑

(s,t)∈Γ

Us.t(eS , et, os, ot) =

=
∑

(s,t)∈Γ

V1(es, et, os, ot) + V2(es, et) + V3(es, et)
(4.20)

Analyzing the definitions of the three energy terms we can define a unified local
term as:

Us,t(es, et, os, ot) =
{

V1(es, os, et, ot) + V2(es, et) es = et

V3(es, et) es 6= et
(4.21)

We can also assign a binary state to each arc that identifies if the two connected
regions have the same label or not.

4.5.2 Energy optimization

The main advantage of Eq. 4.21 consists on the possibility of a faster optimization.
The algorithm here proposed is composed by two scanning phases: the first on the
arcs and the second on the nodes. As above reported, the computational complexity
becomes quadratic O(n2) (evaluation of n2 arcs plus n nodes).

For each arc (s, t) we evaluate if it is more convenient to break it or not, by
considering only the sub-graph composed by the arc and the two connected nodes
(s and t). To this aim we define Ws,t as in equation 4.22 and the test to perform on
each arc is shown in equation 4.23:

Ws,t = Ws,t(es, et, os, ot) = V1(es, os, et, ot) + V2(es, et)− V3(es, et) (4.22)

Ws,t ≥ 0⇒ (s, t) broken (4.23)

After that, the nodes of the graph are labeled using a modified region growing
algorithm. Starting from the first node, all the nodes connected with non-broken
arcs are merged with the same label. This optimization is sub-optimal because the
graph may present a sort of inconsistence.

In fact, Fig. 4.10.a shows a segmented frame of the indoor sequence and the
correspondent SRG. A particular containing three adjacent regions (labeled with
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Figure 4.10: Possible graph inconsistence during arc based optimization

r,s,t) is zoomed in Fig. 4.10.b. If we suppose that the signs of Ws,t, Ws,r, and Wr,t

are as in Fig. 4.10.c (positive the first and negative the others two) the graph will
become inconsistent. The arc (s, t) is broken, but the growing algorithm assigns
the same label to nodes s and t walking through arcs (s, r) and (r, t) with the
consequent increase of the energy associated to the arc (s, t) and the global energy
is not minimized. Instead, an optimum algorithm should evaluate if preserving a
unique label for the three nodes is “more convenient” than assign a different label
to node s or node t. For this reason, the defined algorithm is not generalizable for
any graph, while it is applicable with good results in our application. In fact, the
energy function is principally based on motion difference. The situation presented
in figure is very infrequent, because it means that r and t have a similar motion,
the same for s and r, but not for s and t.

The main task for our purposes is to merge regions with same motion and
separate regions with very different motion. In other cases, possible errors due
to segmentation and motion estimation result to be more relevant than previous
simplifications in MRF optimization. Unfortunately, with this new algorithm, we
lose the implicit tracking of the objects, because the labeling phase does not consist
in an optimization of a prediction as in section 4.3.3 and in [39]. The prediction
is useless since labels are given by following the non-broken arks. Indeed, a final
tracking phase after the end of motion segmentation could be added, if needed. The
performance analysis reported in the next section shows the validity of the method
and the advantages in terms of speed.
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Figure 4.11: Computational time for arc based MRF optimization (on object sequence
200x200)

4.6 Performance analysis on the modified algorithm

4.6.1 Processing times

The main advantage of this new solution is the reduction of computational com-
plexity. The graph in Fig. 4.11 shows time analysis for arc based MRF optimiza-
tion with respect to the number of initial regions. Comparing it with the one of
node-based MRF of Fig. 4.9, the improvement of speed is evident; this phase is
not the bottleneck of the system anymore. For instance, for 50, 100, and 200 re-
gions it requires only 23, 26 and 45 ms, respectively, and node-based MRF requires
about 970, 1200, and 3300 ms, respectively. In particular, if we analyze “object se-
quence” and “hand sequence”, we downscale them to the size of 100x100 pixel,
and assuming s equal to 2, we are able to reach 10 frame per second on a stan-
dard dual Pentium III 1000 Mhz with 512 MB of RAM. Obviously, using a more
off-the-shelf, powerful PC would allow us to reach better performance.

4.6.2 Qualitative metrics

In remains to prove that the sub-optimal optimization introduced does not affect
much the efficacy of our system. To do this, the new system was tested on the
same sequences used previously. In the “objects sequence” we obtained identical
results: the color segmentation is unchanged and the region motion values are al-
ways correctly computed; both the MRF algorithms of sections 4.3.3 and 4.5.2 can
extract the objects in motion correctly. Instead, in the case of the “hand sequence”
the output is slightly worse with the new optimizer, because wrong motion values
are assigned to the parts of small regions affected by occlusion (compare Fig. 4.12
and Fig. 4.8). In Fig. 4.13 the number of pixels in real motion and the ones com-
puted as in motion with the new optimizer are reported. Anyway, as it is possible
to see, the results are satisfactory since the difference is limited between the two
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Figure 4.12: False negatives and positives (as in Fig. 4.4) over the hand sequence with
arc-based optimization

Figure 4.13: Points in motion on hand sequence calculated with arc based optimization
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profiles: the “output” curve is higher than the “real” curve because of the merging
of small regions of background to the moving hand. Similar performance results
in efficacy has been tested in the “indoor sequence” and in other videos

4.7 Conclusions

In this Chapter a method for foreground segmentation on video acquired by a mov-
ing and unconstrained camera has been presented. The work on this topic was
conducted in 2004, when the PC performances were considerably worse than now.
The proposed approach is based on color and motion segmentation with a MRF
framework; it achieves satisfactory results when the motion can be approximated
with a translational model. A new Partitioned Region Matching has also been
proposed to perform a good motion estimation, even in presence of occlusion or
shape variation. This motion estimation method, that is a sort of mixing between
traditional region matching and block matching, can be used in a lot of different
applications.
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Chapter 5

Appearance Based Tracking

5.1 Introduction

After a foreground image F has been extracted the real moving objects generat-
ing F must be identified, separated, and followed over time. To this aim, several
tracking algorithm have been studied and proposed. Among them, appearance-
based tracking algorithm are characterized by some peculiarities that make them
particularly suitable for video surveillance applications.

Appearance-based tracking is a well established paradigm to predict, match
and ensure temporal coherence of detected deformable objects in video streams.
These techniques are very often adopted as a valid alternative to approaches based
on 3D reconstruction and model matching, by computing the visual appearance
of the objects in the image plane only, without the need of defining camera, world
and object models. Especially in human motion analysis applications, the exploita-
tion of appearance models or templates is straightforward. Templates enable the
knowledge not only of the location and speed of visible people but also their visual
aspect, their silhouette or the body shape at each frame.

Appearance driven tracking is often employed in video surveillance applica-
tions, and particularly in people surveillance, action analysis and behavior moni-
toring, in order to have a precise information about the visible and non visible body
aspect at each instant [5,81–87]. It is used also in human-computer interaction ap-
plications [88], in gesture analysis [89] and in many other problems coping with
moving objects with deformable shapes.

The appearance model is defined in the image plane as an adaptive model of
the visual aspect of an object, or a selected shape or a segmented blob during the
time. It is normally represented by a mask A updated as a IIR filter: for each point
x of the object, A(x) is computed as a linear function of the previous value of the
model and the current observation value I(x):

A(x, t) = k1 ·A(x, t− 1) + k2 · I(x, t). (5.1)

The parameters k1 and k2 take into account the variability of the visual appearance
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of the points of the object during the time. Eq. 5.1 can be defined in the gray
level [5] or in the color space [38, 81–83, 90].

Appearance models are used in tracking algorithms to ensemble the visual sta-
tus of an object previously tracked. In discriminative bottom-up tracking, which
searches the best association between a known object and the current image as
a result of an optimization problem, the appearance model is embodied in sim-
ilarity functions to be optimized. These approaches are normally deterministic,
in the sense that a single solution at each frame is carried out. As [91] states,
bottom-up algorithms are computationally efficient, but it is hard for them to cope
with occlusions unless the appearance model itself is robust against occlusions. In
probabilistic top-down tracking appearance models can be used together with po-
sition, speed and other variables to define the status of the object, estimated by a
probability distribution function (pdf ). These methods have a more accurate mo-
tion estimation, especially because many solutions can be considered at the same
time (e.g. in Particle Filtering) but are more computational expensive. Here oc-
clusion can be modeled from top-down in the same framework, for instance with
Bayesian Networks [91]. Many of these methods are called generative, since more
hypotheses are generated, also by modeling the hidden factors that would affect the
observed data. In this second case, appearance models have often a more compact
representation, as for instance with color histograms [82, 84] since an appearance
model at pixel level can make the pdf dimensionality to high to be computed in
time constrained applications. On the other side, when the time is not a constraint
but a precise tracking is required (e.g. in medical imaging), more complex appear-
ance models have been proposed: for example, appearance models can be a learned
PCA-based framework exploiting both shape and texture, as in Active Appearance
Models [90] or Adaptive Active Appearance Models [85].

In deterministic tracking, appearance templates are typically matched against
selected regions of the image plane, by means of a previous process of motion or
color segmentation. In this case, they are often associated to probability masks that
contain for each point x a P (x) value between 0 and 1 indicating the probability
to have a visible appearance in that point of the reference object [5, 38, 81, 90].
The probabilistic mask is used as a weight in similarity functions to search the best
match between object and observation, in order to give a greater importance to
stable points in the object appearance.

Appearance-based deterministic tracking offers several advantages in real-time
applications: the generality and flexibility, since no object model is required; the
speed, since only one solution is maintained at each frame step, and the large
amount of information available, since appearance is normally kept at pixel level.
Besides, appearance-based tracking of data extracted by a previous segmentation
inherits the typical errors caused by the segmentation: partial segmentation, split
and merge problems must be solved at tracking level. In addition, the big chal-
lenge of appearance-based tracking is the frequent presence of visual occlusions.
Occlusions make the current observation totally or partially not available for some
time intervals. Therefore, the optimization process of observation-object matching
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could have more than one solution, produce errors and imprecision. The update
process of the appearance models can be incomplete or incorrect with an error
propagation and an unavoidable loose of the object identity.

For these reasons, many works address the occlusion handling with appearance-
driven tracking. Most of them deal with dynamic occlusions only, (sometime called
inter-object occlusions) i.e. occlusions due to other moving objects. Dynamic oc-
clusions in people tracking generate the so-called “groups of people”: during the
occlusions separate people are detected in a segmentation phase as a unique blob.
Many tracking proposals are capable to detect the occurrence of an occlusion, as-
sociate the unique blob to a set of tracked objects and resume after the occlusion
is ended. Other approaches use heuristics or exploit the object models to solve
dynamic occlusions, as for instance counting the number of heads in people group
tracking [5].

Few works deal explicitly with the problem of scene occlusions, i.e. occlusions
due to not moving objects that in the scene are closer to the camera w.r.t the ob-
served object. Scene objects can partially hide the observation data. The result is
that the appearance model is updated as in the case of a shape deformation. This
erroneous appearance model change causes errors in all the measures associated
with visual appearance, such as the computation of trajectory, the posture analysis
and so on.

Our tracking system focuses on the problem of dealing with different classes
of occlusions in the appearance-based deterministic tracking framework to follow
deformable shapes and in particular human shapes. The primary goal is to have,
at each frame, an appearance-model at pixel level as more accurate as possible,
with a very reactive update process copying with frequent shape variations. At the
same time, we want to deal with the problem of both dynamic and scene occlusions
during their occurrence and not after, updating the appearance model selectively.

This chapter provides a formal definition of our approach, called Appearance
Driven tracking with Occlusion Classification (Ad Hoc). Differently from many
other proposals, Ad Hoc tracking works at pixel-level and not at a blob-level, in
order to avoid split and merge problems. The problem is formulated in a proba-
bilistic Bayesian model, taking into account both motion and appearance status.
The probabilistic estimation is redefined at each frame and optimized as a MAP
problem so that a single solution for each frame is provided in a deterministic way.
We do not track each object separately but the whole object set is considered in
the tracking in a two-step process: a first step, top-down, provide an estimation of
the best position of all the objects, predicting their position and optimizing them
in a MAP algorithm, according with the pixel appearance and a specifically de-
fined probability of non-occlusion. The second step is instead discriminative and
bottom-up, since an association of each observation point to the most probable ob-
ject is done. Thus, the appearance model of each object point is selectively updated
at pixel level in the visible part ensuring high reactivity in shape changes.

The novelty of the work is a formal model of non visible regions that are non
negligible parts of the appearance model not observable in the current frame, where
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the pixel to object association is not feasible. Non visible regions are classified in
three classes, depending on the possible cause: dynamic occlusions, scene occlu-
sions and apparent occlusions (that are just only shape variations). The first are
detected in the Bayesian point association; the second and the third ones are dis-
criminated by an analysis of the edges against the background edges. The model
is updated differently in the different cases; the appearance is modified with cur-
rent color value only in the visible pixel; the probability value associated with each
pixel is reinforced in visible pixels, smoothed in not visible points due to apparent
occlusion and “frozen” in points hidden by a dynamic or static occlusion.

Ad Hoc tracking can be used for whichever shape of objects. Nevertheless we
often refer to human tracking since the algorithm is particularly suitable to deal
with dynamic shape changes and the non rigid motion of humans.

The context of video surveillance is considered for both outdoor and indoor
applications. The proposed tracking is particularly suitable in indoor surveillance
when the people body is completely visible in a sufficient large size, and the precise
shape tracking is an important task. Despite of the relatively complex model, the
derived algorithm is simple, fast and robust and has been applied in many different
applications for posture analysis [87], distributed camera people surveillance [92],
and also in stopped vehicle surveillance [11].

5.2 Related works

The use of appearance-based tracking with templates for deformable objects, and
in particular for humans, is now very widespread, since the pioneer works of Har-
tiaglou et al. [5], and Bobick and Davis [93]. In these papers, the adaptive templates
were initially modeled more for human activity analysis than for tracking.

W4 [5] introduced appearance models and probability maps called “gray-scale
textural appearance” and “shape component” respectively. The textural templates
keep the adaptive information of the shape visual appearance at gray-level and are
included with the probability maps in the “weighed similarity” function. Tem-
plates have not been used to cope with people occlusions. The presence of people
occluded by other ones (forming a “group of people”) was instead addressed with
a specific algorithm counting the heads with projective histograms. In [93] the au-
thors proposed a two-component temporal template with a motion energy image
and a motion history image that are exploited to recognize different human actions.

In successive works, appearance models have been inserted directly in the
tracking loop. The models are put in correspondence with the current observation
composed by the moving blobs obtained with a segmentation process. Typically
with fixed camera videos, the observed data are foreground blobs after background
suppression. Methods based on Mixture of Gaussian [94], adaptive median [1], a
combination of both [95], or other methods can be exploited to extracts foreground
points normally grouped into blobs before the tracking algorithm. Senior et al. in
PETS2001 [81] defined appearance models and probabilistic maps to track peo-
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ple and vehicles also partially overlapped. In this work, short term occlusions are
implicitly taken into account in the adaptive model. Short term occlusions, like
shape deformation contribute to smooth the appearance model according with a
adaptive coefficient. Tracking fails if the occlusion duration is too high. In case of
group of people projective histograms of the probability map are evaluated: blobs
are separated vertically in the parts where the probability map is low. It works
only if the persons are sufficiently separated. For instance In [38], in order to cope
with dynamic occlusions of other people, the segmented blobs have been grouped
into macro-objects with potential occlusions and then appearance-based tracking
is solved with models against the points of the macro objects. Similar solutions
are currently adopted in many video surveillance systems and prototypes. The
work [81] has been implemented in IBM S3 [96]. The solution of W4 has been
improved in [90], using textural and shape templates at level of body limbs. The
definition of body limbs is often adopted if tracking is followed by a posture clas-
sification step. In a very recent work [97], an initial limb body model initializes
the search of people with HMM and then appearance models of limbs are learned
during the tracking to have a precise data about the people posture and action.

One of the most cited solution is the work of Zhao and Nevatia [82]. They
state that blobs cannot be used efficiently, since do not incorporate object con-
straints; blobs have problems of structural changes (merges and splits) that cause
the combinatorial search expensive. Therefore they propose the use a simple hu-
man model (a normalized ellipsis after homography) instead of blob. In this region
they compute T textural template (appearance model in rgb space) and foreground
probability (Fp). Tracking is solved in a discriminative way by estimating the best
position with a similarity function with T, Fp and the current image. The motion
estimation is provided with a Kalman Filter. Similarly, Ad Hoc is driven by ap-
pearance and probability model. Differently form [81, 82] we do not associate the
model to a blob, neither to a blob conjunct with a human model like an ellipsis,
but we work at pixel level trying to associate each foreground pixel to each object
in the tracked object set. This allows a more precise appearance update for each
object and a straightforward detection of dynamic occlusions.

We use a first-order model motion prediction, as it is very common in people
tracking (see for example [86, 90]), that is refined with a linear regressive method
over the trajectory in order to smooth the frequent small errors in motion predic-
tion due to the non rigid body motion. More complex predictive models are not
necessary since the prediction is followed by a local search of the best alignment.
It can be improved with a Kalman-based prediction in some specific cases.

Our proposal does not exploit generative methods such as Particle Filtering [86]
Monte Carlo-based methods [82] or Bayesian networks with HMM [98] that keep
the status of each object represented by a pdf, possibly discretized by a set of can-
didate solutions. In many applications where real-time computation is mandatory
a trade-off between number of evaluated solutions and the granularity of each solu-
tion must be defined. Generative methods take thousand of solutions (for instance
1000 or 2000 particles in [98]) but are often used in conjunction with compact ap-
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pearance models, such as color histograms or color distribution [86, 99]. In our
case, since the appearance is update at pixel level and many comparisons are nec-
essary, especially in video with frequent and large occlusions, a discriminative
methods that consider tracking as an optimization problem is preferred.

Most of the aforementioned approaches address the problem of occlusion. Gen-
erative models make it by definition since maintain a large set of hypotheses, and
some of them survive and resume after the occlusion. Instead, discriminative
appearance-based approaches generally deal with the problem of occlusion detec-
tion only. The ratio between the number of observable points and the points of the
appearance models provide a measure of possible occlusion: in [82] and in [100]
this ratio determines if the object is partially or totally occluded and in that case the
model is not updated. In [90] an appearance model for tracking segmented object
is proposed: in case of occlusions authors state that adopt a particle filtering with a
correlation measure, but there are no information about how detect occlusions and
how switch between a deterministic and a particle filtering tracking.

Also in [101] an occlusion is detected when pixels appearance deviates too
much from the object model: here Jepson et al. proposed an appearance model
which is a mixture of three components: a stable part, learned over long time
courses, a “wandering” part which accounts for rapid temporal variations, and an
outlier process. Short-term occlusions are solved by not assigning the occluded
pixels to the stable part. In [83], the robust Kalman Filter for each point makes the
appearance model resistant to short-time partial occlusions, but the authors admit
its failure to handle long-time occlusions.

We also perform occlusion detection as in [82,100], with a confidence measure
weighted by the probability, but we add an occluded region classification to update
the model selectively copying with both static and dynamic occlusions. In [102]
occlusions are classified as “inter-object occlusions” , that are the dynamic ones
and the occlusions due to “thin scene structures” and “large structures”. The first
causes group of people, the second a temporary split and the third the object disap-
pearing. Some heuristic rules are proposed to cope with group, split and temporary
disappearing. Also the recent work of Wu and Nevatia [103] aims at coping with
both inter-object and scene occlusion. In this case there is no occlusion classifica-
tion but human tracking is done by parts. A greedy correspondence algorithm is
used whenever possible, i.e. when the body parts are visible; otherwise a mean-
shift tracker [91] is adopted that allows a robust tracking also if parts of the body
are not visible.

5.3 The Tracking Algorthm

Even if Ad Hoc tracking will work at a pixel level, the central element in the system
is the object O, which is described by its state vector O = {{o1, . . . , oN},~c, ~e, Π},
where {oi} is the set of the N points which constitute the object O, ~c and ~e are
respectively the position with respect to the image coordinate system and the ve-
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locity of the centroid, Π is the probability of being the foremost object, thus the
probability of non-occlusion. Each point oi of the object is characterized by its
position (x, y) with respect to the object centroid, by its color (R,G,B) and by its
likelihood α to belong to the object.

The scene at each frame t is described by a set of objectsOt = {O1, . . . , OM}
which we suppose are generating the foreground image F t = {f1, . . . , fL}, i.e. the
points extracted by any segmentation technique. Each point fi of the foreground
is characterized by its position (x, y) with respect to the image coordinate system
and by its color (R,G,B). The tracking aim is to estimate the set of objects Ot+1

observed in the scene at time/frame t + 1, based on the foregrounds extracted up
to now. In a probabilistic framework, this is obtained by maximizing the following
probability:

P (Ot+1|F 0:t+1), (5.2)

where the notation F 0:t+1 .= F 0, . . . , F t+1. In order to perform this MAP (max-
imum a posteriori) estimation, we make the assumption of having a first order
Markovian model, meaning that

P (Ot+1|F 0:t+1) = P (Ot+1|F t+1,Ot). (5.3)

Moreover, by using the Bayes theorem, it is possible to write

P (Ot+1|F t+1,Ot) ∝ P (F t+1|Ot+1)P (Ot+1|Ot)P (Ot). (5.4)

Optimizing Eq. 5.4 in an analytic way is not possible, so this would require to test
all the possible objects sets, by changing their positions, appearances, and proba-
bilities of non-occlusion. This is definitely unfeasible, so we break the optimization
process in two steps, by locally optimizing the position, then updating the appear-
ance and the probability of non-occlusion.

5.4 Position optimization

The first task of the algorithm is the optimization of the centroid position for all
objects. In Eq. 5.4 the term P (Ot) may be set to 1, since we just keep the best
solution from the previous frame. The term P (Ot+1|Ot) that is the motion model,
is provided by a circular search area of radius r around the estimated position ĉ of
every object. This is obtained with a first order linear model, that is computed from
the previous center and velocity:

ĉt+1 = ~c t + ~e t (5.5)

P (Ot+1|Ot) =
{

1
πr2 if

∥∥~c t+1 − ĉt+1
∥∥ < r

0 otherwise
(5.6)
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Figure 5.1: Domain and Codomain of the function gO. gO transforms the coordinates of a
foreground pixel x ∈ F to the correspondent object coordinates.

In order to measure the likelihood of the foreground to be generated by an
object, we need a way to match their point positions, that is defining a relation
among the elements of F and O. To this aim we define a function gO as:

gO : F → O
gO(f) = o ∈ O | ~x(f) = ~x(o) + ~cO.

(5.7)

The function ~x(·) gives the coordinates vector (x, y) of the point.
Directly from the definition of the function gO we can obtain its domain F̃O

that is the set of foreground points matching object’s points. We may then define
F̃ =

⋃
O∈O

F̃O, that is the set of foreground’s points which match at least one object.

In the same way we call Õ the codomain of the function gO, that includes the points
of O which have a correspondence in F̃ . (See Fig. 5.4).

Since the objects can be overlapped, a foreground point f can be in correspon-
dence with more than one object O. Thus, we can define the set O(f) as:

O(f) =
{

O ∈ O : f ∈ F̃O

}
. (5.8)

The term P (F t+1|Ot+1) is given by the likelihood of observing the foreground
image given the objects positioning, that can be written as:

P (F t+1|Ot+1) =
∏
f∈F̃

 ∑
O∈Õ(f)

P (f |gO(f)) ·ΠO

 (5.9)

obtained by adding for each foreground pixel f the probability of being gener-
ated by the corresponding point o = gO(f) of every matching object O ∈ O(f),
multiplied by its non-occlusion probability ΠO.
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Figure 5.2: Visible and non visible part of an object. F̃ is the foreground part not covered
by an object.

The conditional probability of a foreground pixel f , given an object point o is
modeled by a Gaussian distribution, centered on the RGB value of the object point:

P (f |o) =
1

(2π)3/2|Σ|1/2
e−

1
2
(f̄−ō)TΣ−1(f̄−ō) · α(o) (5.10)

where (̄·) and α(·) give the RGB color vector and the α component of the point re-
spectively, and Σ = σ2I3 is the covariance matrix in which the three color channels
are assumed to be uncorrelated and with fixed variance σ2. The choice of sigma
is related to the amount of noise in the camera. For our experiments we choose
σ = 20.

From a computational point of view, the estimation of the best objects’ align-
ment would require at most (πr2)M evaluations. It is reasonable to assume that
the contribution of the foremost objects in Eq. 5.9 would be predominant, so we
locally optimize the function, by considering only the foremost object for every
point. The algorithm proceeds as follows:

1) A list with the objects sorted by their probability of non-occlusion (assuming
that this is inversely proportional to the depth ordering) is created;

2) The first object O is extracted from the list and its position ~c is estimated by
maximizing the probability:

P (F̃ |O) ∝
∏

f∈F̃O

P (f |gO(f)). (5.11)
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3) After finding the best ~c, the matched foreground points are removed and the
foreground set F considered in the next step is updated as F = F \ F̃O.

4) The object O is removed from the list as well, and the process continues
from 2, until the object list is empty.

The described algorithm may fail for objects which are nearly totally occluded,
since a few pixels could force a strong change in the object center positioning. For
this reason we introduce a Confidence measure for the center estimation, to account
for such a situation:

Conf(O) =

∑
o∈Õ

α(o)∑
o∈O

α(o)
. (5.12)

If during the tracking the confidence drops under a threshold (set to 0.5 in our
experiments), the optimized position is not considered reliable, thus only the pre-
diction is used:

ct+1 = ĉt+1 (5.13)

5.4.1 Pixel to Track Assignment

This is the second phase of the optimization of Eq. (5.4). Once all the tracks have
been aligned, in this top-down approach we aim at adapting the remaining parts of
each object state. Even in this case we adopt a sub-optimal optimization. The first
assumption we made is that each foreground pixel belongs to only one object. To
this aim we perform a bottom-up discriminative pixel to object assignment finding
the maximum of the following probability for each point f ∈ F̃ :

P (O → f) ∝ P (f |gO(f)) · P (gO(f)) = P (f |gO(f)) · α(gO(f)), (5.14)

where P (f |gO(f)) is the same of (5.10) and we use the symbol → to indicate
that the foreground pixel f is generated by the object O. Directly from the above
assignment rule, we can divide the set of object points into visible OV and non-
visible ONV points:

OV =
{

o ∈ O | ∃f = g−1
O (o) ∧ argmax

Oi∈O
(P (Oi → f)) = O

}
ONV = O −OV

(5.15)

In other words, the subset OV is composed by all the points of O that correspond
to a foreground pixel and that have won the pixel assignment. (See Fig. 5.4). The
alpha value of each object point is then updated using an exponential formulation:

α(ot+1) = λ · α(ot) + (1− λ) · δ(o,OV ) (5.16)

where δ(·, ·) is the membership function:

δ(o,OV ) =
{

1 o ∈ OV

0 o /∈ OV
(5.17)
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The equation (5.16) includes two terms: one proportional to a parameter λ ∈ [0, 1]
that corresponds to P (Ot+1|Ot) and reduces the alpha value at each time step, and
one proportional to 1− λ that increases the α value for the matching visible points
P (F |O). Similarly we update the RGB color of each object point:

ōt+1 = λ · ōt + (1− λ) · f̄ · δ(o,OV ) (5.18)

with f = g−1
O (o).

For computational reasons, if the α value of a point o ∈ O go below a prede-
fined threshold (set always to 1−λ), the point o is removed from the corresponding
object O.

The last step of the object state updating concern the non occlusion probability
Π. To this aim we first define the probability Pot+1 that on object Oi occludes
another object Oj .

Po(Oi, Oj)t+1 =


0 βij < θoccl

(1− βij)Pot
ij aij = 0

(1− βij)Pot
ij + βije

aji
aij aij 6= 0

, (5.19)

where

aij =
∥∥∥∥OV,i ∩

g
ONV,j

∥∥∥∥ =
∥∥∥g−1

Oi
(OV,i) ∩ g−1

Oj
(ONV,j)

∥∥∥
βij = aij+aji∥∥∥∥Oi ∩

g
Oj

∥∥∥∥
(5.20)

aij is the number of points shared between Oi and Oj and assigned to Oi; βik is
the percentage of the area shared between Oi and Oj assigned to Oi or Oj , that is
less or equal to 1 since some points can be shared among more than two objects.

The value β is used as update coefficient, allowing a faster update when the
number of overlapping pixels is high. Vice versa, when the number of those pixel
is too low (under a threshold θoccl), we reset the probability value to zero. In the
example of Fig. 5.3 the number of assigned pixels and the probabilities of occlusion
are depicted for the two objects involved in an occlusion. Note that the probabilities
of occlusion update slower at the beginning of the occlusion (i.e., when the number
of assigned pixels is low), and then faster. After a certain amount of time, a stable
situation is reached, when the foremost object has a high probability of occlusion.
The probability of non occlusion for each object can be computed as:

Π(Oi)t+1 = 1− max
Oj∈O

Po(Oi, Oj)t+1. (5.21)

5.4.2 Shape changes and new objects detection

With the probabilistic framework previously described we can ‘assign and track”
all the foreground pixels belonging to at least one object. Instead, the foreground
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(a) (b) (c) (d)

(e)

(f)

Figure 5.3: (a-d): sample frames; (e) number of assigned point aik and aki during the
occlusion. (f) Probabilities of occlusion Po(Oi, Oj)t and Po(Oj , Oi)t.

image contains points f(∈ F − F̃ ) without any corresponding object, due to shape
changes or the entrance into the scene of new objects as well. We suppose that a
blob of unmatched foreground points is due to a shape change if it is connected
(or close to) an object, and in such a situation the considered points are added to
the nearest object; otherwise a new object is created. In both cases the α value of
each new point is initialized to a predefined constant value (e.g., 0.4). Obviously
in this manner we cannot distinguish a new object entering the scene occluded by
or connected to a visible object. In such a situation the entire group of connected
object will be tracked as a single entity.
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(a) (b) (c)

Figure 5.4: An example of loss of part of the model because of an occlusion, if the model
does not takes into account occluded pixels and works on assigned pixels only. (a) Input
frame; (b) Current segmentation; (c) Appearance Memory model and Probability mask
without handling occlusions. The trajectory in (b) changes the direction because of the
loss of the memory of the people legs.

5.4.3 Occlusion Detection and Classification

Due to occlusions or shape changes, some points (o ∈ O − Õ) of an object could
have no correspondence with the foreground F due to shape changes or occlusions.
Unfortunately, these two reasons require two different and conflicting solutions.
To keep a memory of the object shape even during an occlusion the object model
need to be slowly updated; at the same time a fast updating can better face shape
changes. Other proposed techniques that exploit probabilistic appearance models
without coping with occlusions explicitly, use a unique threshold to reach a good
trade off between the above mentioned behaviors. An example is shown in Fig.5.4,
in which, after a few frames, the track model looses any knowledge about the per-
son’s legs. This approach has some drawbacks, such as the shift of the centroid
and the erroneous estimation of position and trajectory. In our work, the adaptive
update function can be enriched by the knowledge of occlusion regions. In partic-
ular, if a point is detected as occluded we freeze the color and α value of the point
instead of using Eq. (5.16) and Eq. (5.18).

The introduction of a higher level reasoning is necessary in order to discrimi-
nate between occlusions and shape changes. The set of non visible points ONV are
the candidate points for occluded regions. After a labeling step over ONV , a set
of not visible regions (of connected points) is created; sparse points or too small
regions are pruned and a final set of Non Visible Regions {NV Rj} is created. Each
of them can be classified as one of these three classes:

1) dynamic occlusions RDO: occlusions due to overlap of another object, closer
to the camera; therefore the pixels of this region were assigned to the other
object;

2) scene occlusions RSO: due to (still) objects, included in the scene and there-
fore into the background model and thus not extracted by the foreground
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(a) (b) (c) (d)

Figure 5.5: Example of erroneous track freezing in case of occlusion. (a) Original image;
(b) an occlusion causes the percentage of visible pixels to became too low and the model
updated is stopped; (c) the track and V O matching is still maintained; (d) the track 20 is
lost and the new track 21 is created because of the change of shape.

segmentation algorithm, but actually positioned closer to the camera;

3) apparent occlusions RAO: regions not visible because of shape changes,
silhouette’s motion, shadows, or self-occlusions.

The presence of an occlusion can be inferred exploiting the Confidence value
of Eq. 5.12 decreasing below an alerting value, since in case of occlusion the
object’s shape changes considerably. The occluded points x of the object model
(x ∈ RDOorx ∈ RSO) should not be updated since we do not want to lose the
memory of it. Instead, if the Confidence decreases due to a sudden shape change
(apparent occlusion), not updating the object state would create an error. The solu-
tion is a selective update according to the region classification.

The detection of the first type of occlusion is straightforward, because we al-
ways know the position of the objects, and we can easily detect when two or more
of them overlap. RDO regions are composed by the points shared between object
Ok and other object Oi but not assigned to Ok. We can mathematically formulate
this check as:

RDO =
{

o ∈ ONV,i | ∃o′ ∈ Oj ∧ g−1
Oi

(o) = g−1
Oj

(o′)
}

(5.22)

To distinguish between RSO and RAO the position and the shape of the ob-
jects in the background can be helpful, but usually they are not provided. However,
most of the segmentation algorithms from fixed camera make a background model
available. It is computed at each frame in background suppression segmentation
techniques, or can be estimated only when needed [5, 82, 94]. Our proposal to dis-
criminate between RSO and RAO exploits the background edges set. This subset of
points of the background model contains all points of high color variation, among
which the edges of the objects are usually detected. In case of a RSO we would ex-
pect to find edge points in correspondence of the boundary between this RSO and
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the visible part of the track. From the whole set of not visible points Ot
NV defined

as in Eq. (5.15), we only keep those with a not negligible value of the probability
mask in order to get rid of the noise due to motion. The remaining set of points is
segmented into connected regions. Then, for each region, the area weighted with
the probability values is calculated, and too small regions are pruned. The remain-
ing non visible regions (NV Rj) belonging to an object O, must be discriminated
into background object occlusions and apparent occlusions. We call B(·) the set of
border points of a region. At the same time, the edges of the background model are
computed by a simple edge detector, reinforced by probability density estimation.
We could exploit a more robust segmentation technique, e.g. mean shift [91], to
extract the border of the objects in the background image, but in our experiments
the edge detection has given good results, requiring much less computation. Given
the set of edge points E = {ei}i=1..n in the background image a probability den-
sity estimate for the background edges can be computed using a kernel ϕ(x) and a
window h:

pn (x|E) =
1
n

n∑
i=1

1
h2

ϕ

(
‖x− ei‖

h

)
(5.23)

The probability density for non-edges p(x|Ē) can be assumed to be uniform
over the same region R. We can then naively compute the a posteriori probability
for a pixel x to be an edge point:

P (E|x) =
P (x|E)

P (x|E) + P
(
x| Ē

) (5.24)

where we assumed equal a priori probability. We can now compute the aver-
age a posteriori probability of the set of points o ∈ BONV to be generated by
the background edges. In particular we are interested on the subset B̃(ONV ) =
B(ONV ) ∩ B(OV ) that is the part of the border of ONV connected to the visible
part OV . The probability estimate allows tolerating a noisy match between BONV

and the edge points. In case this average probability is high enough, meaning that
the contour of the occluded region has a good match with the edges, we can infer
that another object is hiding a part of the current one, and thus the region is labeled
as RSO, otherwise as RAO. In other words, if the visible and the non visible part
of an object are separated by an edge, then plausibly we are facing an occlusion
between a still object of the scene and the observed moving object. Otherwise, the
shape change is more reasonable cause of the no more visible points.

In Fig. 5.6 an example is shown: a person is occluded for a large part by a stack
of boxes that are included in the background image. Two parts of its body are not
segmented and two candidate occlusion regions are generated (Fig. 5.6(c)): one of
them is a shadow included in the object model but now disappeared. In Fig. 5.6(d)
the borders of the NV Rs are shown, with pixels that have a good match with the
edges marked in black. In real occlusion due to a background object the percentage
of the points that have a match with respect to the set of bounding points is high;
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(a) (b) (c)

(d) (e)

Figure 5.6: Example of RSO regions: (a) The input frame. (b) The color and the α repre-
sentation of the object points. (c) The current background model (d) The visible part of the
track (blue) and the candidate occlusion regions (red).(e) the borders of the Non Visible
Regions. Points that have a good match with edge pixels of the background are marked in
black. Thus R1 is classified as a RBO region while R2 as a RAO region.

thus the region is classified as RSO. On the contrary, for the apparent occlusion
(the shadow) we have no matching pixels, and consequently this region is classified
as RAO.

In Fig. 5.7 we see another example of apparent occlusion: a person initially
standing suddenly falls onto the floor; since his shape considerably changes, a
candidate occlusion region appears in correspondence of his legs. The algorithm
correctly classifies this region as apparent occlusion, and thus the model is updated.

5.4.4 Refinements

The described model works well in real situations if the initial conditions are ideal,
that is if we assume that a single person is entering in the scene at a time, and
not occluded by other objects. However, in order to correctly manage all the other
conditions, the tracking system has to cope with the well-known problems of merge
and split of objects. The same object due to occlusion could initially appear as two
different objects: in the example of Fig. 5.8, two of them are associated to the
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(a) fr. 394 (b) fr. 424 (c) fr. 434

(d) (e) (f)

Figure 5.7: (a-c) a person falls on the ground. (d-f) The probability masks show an appar-
ent occlusion in correspondence of the legs.

(a) (b) (c)

Figure 5.8: Merge. (a) input frame; (b) two objects created; (c) the objects are merged

single person entering the scene, due to the occlusion of the table. In our work, we
exploit the motion vectors of the object to detect if a merge is needed. In case the
objects are near and have similar motion vectors they are merged together (see Fig.
5.8(c)).

The opposite problem arises when a group of people enters the scene together
(see Fig. 5.9). Since they are represented by a single blob, only one object is
created. While some authors proposed a splitting technique based on head detec-
tion [5,82], we decided to split the objects only in case of group separation. To this
aim, the probability mask is periodically analyzed to check the presence of two or
more well-separated connected components; in such case, the object is split (Fig.
5.9(c)) and one or more new objects are created. This method is potentially less
reactive, since the presence of two or more person is detected only when they are
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(a) (b)

(c)

Figure 5.9: Split. (a) a single object for two people separating; (b) the probability mask
where two different components are visible; (c) the object is split in two objects

visually separated, but it does not rely on head detection, which is not straightfor-
ward in some cases (e.g. a person with an arm higher than the head).

5.5 Experiments

The system has been devised for a project of Indoor Surveillance to control the
people behavior at home and detect dangerous situations, as people falling and ly-
ing motionless on the floor for a long time. It has been used for video surveillance
with a single camera and, in particular, as a basic step for posture detection [87].
In such a situation a frame by frame people behavior control require a complete
tracking module with occlusion handling capabilities. In our experiments we ex-
ploited a background suppression algorithm called Sakbot (Statistical Knowledge
Based ObjecT Detection) [1] that detects moving objects, shadows and ghosts (i.e.
errors of the background model). SAKBOT exploits selective background update,
in order not to update it in the image parts where a visual object is detected. This
approach also allows us to segment object that are stopped as V O.

As described in section 5.4.3, the algorithm deal with scene occlusion detec-
tion. In the example in Fig. 5.10 a man (with a white t-shirt) is walking behind a
table (that is included in the background model) and stopping there. Moreover, he
also crosses another person walking in the opposite direction. Fig. 5.10(b) shows
the segmented V O. In case of adaptive, but not selective, model update, after a cer-
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Figure 5.10: Example of background object occlusion. (a) A composition of the input
frames. (b) Pixel Assignment. (c) Temporal evolution of the appearance model of one
of the tracks in case the background object occlusions are not handled. (d) The same
appearance model with the handling of BOOs.

tain amount of time, depending on the coefficient of the update, the memory of his
occluded legs is lost, and thus the centroid and the bounding box are not correctly
estimated (Fig. 5.10(c)). This is a problem in posture detection since the silhou-
ette of the segmented V O, and all the other features that can be computed, hardly
match with a standing-up posture model. The problem is solved with the detection
of background object occlusions, where the occluded part of the track is frozen in
the probability mask and in the appearance model, leading to a better estimate of
track’s position. Note that because we don’t handle scaling in track alignment, the
“frozen” legs in the appearance model appear smaller than their real dimension.
Tracking has been extensively tested in a surveillance system mounted in some
rooms of the campus and also for distributed surveillance system. As in [104] the
appearance memory model and probability mask are very useful to disambiguate
and solve consistency labeling problem when a person passes through the field of
view of different cameras. In such a context, camera calibration is provided, so that
the appearance memory model is warped on the image plane of the new camera.
The tracking approach is not too computationally intensive. In our experiment, the
indoor video surveillance is able to process about ten frames per second on a stan-
dard PC including an initial visual object segmentation module with background
suppression and the shadow removal module [1].

Execution times for four benchmark videos are reported in Table 5.1; frames
of example for each video are shown in Fig. 5.11. Those videos contain different
number of people in the scene, as well as different average percentage of frames
occupied by tracks. Video 1 (Fig. 5.11(a)) contains three people walking, sitting
and overlapping each other. People shape is often occluded by other people or
objects. The size of the tracks is smaller than in the other videos. Video 2 (Fig.
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Video 1 Video 2 Video 3 Video 4
% Average Tracks Area 4% 7% 13% 25%
Number of People 3 1 2 3
1. Sorting by object depth 0.07 0.14 0.14 0.14
2. Position estimation 13.25 23.25 21.10 57.17
3. Pixel to object assignment 0.44 0.27 0.45 1.11
4. Morphological Operations 0.29 0.46 0.49 1.37
5. Occlusion Detection 4.06 8.01 10.18 16.48
6. Object state Updating 2.27 4.11 4.08 10.07
7. Refinements - Merge 0.04 0.04 0.02 0.05
8. Refinements - Split 0.33 0.55 0.75 1.41
TOTAL 20.75 36.83 37.21 87.8

Table 5.1: Execution times in ms for 4 sample videos

(a) Video 1 (b) Video 2

(c) Video 3 (d) Video 4

Figure 5.11: Sample frames of the videos of Table 5.1
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(a) fr 560 (b) fr 580 (c) fr 590

Figure 5.12: Video S1V3; sample output sequence of the tracking system during the cross-
ing of two people behind a plexiglass

5.11(b)) shows a single person that frequently changes the posture (stands up, falls
down, lies on the floor, sits). In Video 3 (Fig. 5.11(c)), although two tracks are
present, a background object occlusion (a table and two chairs) hides almost half
of the tracks for most of the time. One can notice that some of the steps are mainly
dependent on the size of the tracks (e.g. merge, split, occlusion detection), while all
the other ones depend on the size of the segmented V Os. Consequently, in Video
3 execution times are similar to Video 2, even if the area of the track is almost
double. The step 6 (Object state updating) reported at the end includes both visible
and non visible pixels respectively updated as in Sec 5.4.1 and in Sec. 5.4.2.

The edge-based method for background object occlusion method is able,on av-
erage, to correctly classify the 85% of non visible regions. This approach could
be further refined but it is enough precise to allow a good reactivity to silhou-
ette’s shape change and, at the same time, a good memory of the appearance mem-
ory model also when a person remains occluded by static objects for a long time.
Therefore, the proposed tracking module is a general scheme that exploits probabil-
ity mask and appearance memory model to keep the knowledge of tracked objects
even if they are partially hidden. The robustness and the reactivity is based on a
selective update process, that manages differently visible pixels, pixels occluded
by static or moving regions and pixels that are not visible anymore, due to shape
changes self-occlusions or sudden silhouette’s motion. This complex but com-
plete process has been tested over days of indoor video surveillance in two rooms
equipped with fixed camera, with some actors and indoor furniture. Moreover, it
has been tested over the complex videos of PETS 2002 [105], in which people walk
and interact behind a shop window.

5.5.1 Results on the PETS 2006 dataset

We tested the tracking system on some videos of the PETS2006 dataset. In partic-
ular we exploit the seven videos of the third camera, since it’s point of view present
a slightly changing background. A summary of the obtained results are reported in
Table 5.2. In particular we highlight the number of the people walking through the
scene and the challenging problems characterizing the videos.
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Video
(#frames)

Number
of People

Solved Issues Errors

S1V3
(3020)

35 1 left luggage
6 dynamic occlusions
3 groups of people
29 correctly tracked people

1 Identity change
1 split head/feet
2 groups are not correctly
split

S2V3
(2550)

31 1 left luggage
1 dynamic occlusions
2 groups of people
27 correctly tracked people

2 groups are not correctly
split
Re-initialization required
after a strong background
change

S3V3
(2370)

19 1 left luggage
4 dynamic occlusions
1 groups of people
16 correctly tracked people

1 Identity change
1 group not correctly split

S4V3
(3050)

16 1 left luggage
4 dynamic occlusions
14 correctly tracked people

1 Identity change for a
person changing direction
during a complete occlu-
sion
1 split head/feet

S5V3
(3400)

30 1 left luggage
6 dynamic occlusions
2 groups of people
27 correctly tracked people

1 split head/feet
1 group not correctly split

S6V3
(2800)

16 1 left luggage
2 dynamic occlusions
1 groups of people
14 correctly tracked people

1 group splits only at the
end

S7V3
(3400)

44 1 left luggage
10 dynamic occlusions
3 groups of people
38 correctly tracked people

1 Identity change
2 split head/feet
1 group not correctly split
baggage change ID 3
times due to occlusions

Table 5.2: The PETS 2006 dataset (only the third camera). The number of correctly tracked
people and the solved issues are reported. In the last column the errors generated by the
tracker are summarized.
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(a) fr 1076 (b) fr 1090

(c) fr 2540 (d) fr 1450

Figure 5.13: Video S2V3 and S2V4; handling of complex situations and interactions

(a) fr 1076 (b) fr 1090

Figure 5.14: Video S3V3; example of object split due to a baggage left
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(a) fr 1851 (b) fr 1883 (c) fr 1904

Figure 5.15: Video S1V3; another example of object split due to a baggage left

(a) fr 2130 (b) fr 2150

Figure 5.16: Video S1V4; dynamic occlusion correctly managed

(a) fr 1851 (b) fr 1883 (c) fr 1904

Figure 5.17: Video S4V3; object split
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(a) fr 325 (b) fr 356

Figure 5.18: Video S1V3; The Merge algorithm used to connect two split parts (torso and
feet) of the same person.

In Fig. 5.12 are shown some example frames of the first Video (frames 560,
580, and 590). During this part of the video two people are walking behind the
plexiglass, crossing each other 5.16. The labels are correctly assigned and kept.
Other example frames showing different kind of interactions between people in the
scene are depicted in Fig. 5.13. The aim of the PETS2006 workshop is to use
existing systems for the detection of left (i.e. abandoned) luggage in a real-world
environment. The luggages are firstly tracked together with their owners; after the
leaving, instead, the split algorithm must be invoked in order to assign two different
identities to the person and the baggage. Fig. 5.14, Fig. 5.15, and Fig. 5.17 shown
the efficacy of our split algorithm over the PETS2006 sequences. Finally, in Fig.
5.18 the merge algorithm has joint together two different parts (feet and torso) of
the same person split due to the plexiglass interposed between the person and the
camera.

5.6 Conclusions

In this work we defined, developed, and tested the AD-HOC tracking, a new ap-
proach for multiple people tracking in video surveillance applications. In particu-
lar, our effort was focused to overcame large and long-lasting occlusions by using
an appearance driven tracking model. Working at a pixel level, it has been pos-
sible to define and manage non visible regions, i.e. the parts of the objects that
are not detected in the current frame, allowing the detection of occlusions. A first
effective aspect is the two step algorithm that gives a fast solution to a probabilistic
model. The main novelty of the system is a classification of non visible regions
into three classes that aims at distinguish between real occlusions (dynamic occlu-
sions), occlusions with an object belonging to the background (scene occlusions),
and shape changes (apparent occlusions). Thus, basing on the classification result,
a different behavior can be adopted to keep memory of the occluded parts of each
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object and to recover them once they appear again. The proposed tracking is very
robust and fast; it has been adopted in several projects of indoor and outdoor people
surveillance, with many people and real operating conditions. Results over the real
sequences from PETS 2006 prove the validity of the approach. Since the tracking
algorithm is model free, it can be applied to different scenarios, and not only to
people.



Part II

People VideoSurveillance





Chapter 6

Human motion capture and
behavior analysis

6.1 Introduction

Emerging technologies can offer a very interesting contribution in improving the
quality of life of people staying at home or working indoors. Most of these tech-
niques and the related systems are converging in the new discipline of Ambient
Intelligence that includes ubiquitous computer systems, intelligent sensor fusion,
remote control, tele-healthcare, video surveillance and many other pervasive in-
frastructure components.

One important goal of these systems is human behavior analysis, especially
for safety purposes: non invasive techniques, such as those based on processing
videos acquired with distributed camera, enable us to extract knowledge about the
presence and the behavior of people in a given environment.

Recent research in computer vision on people surveillance jointly with research
in efficient remote multimedia access makes feasible a complex framework where
people in the home can be monitored in their daily activities in a fully automatic
way, therefore in total agreement with privacy policies.

In this context of video surveillance, most of the emphasis is devoted to tech-
niques capable of execution in real-time on standard computing platforms and with
low cost off-the-shelf cameras. Additionally, in indoor surveillance of people’s be-
havior the techniques must cope with problems of robustness and reliability: for
instance, in videos acquired with a fixed camera, the visual appearance of a person
is often cluttered and overlapped with home furniture, other people, and so on.

In this chapter, we propose a set of computer vision and motion analysis tech-
niques to detect people and interesting events from the scene, and to classify and
recognize them in accordance with a previously defined ontology. For instance,
we have defined the event “fallen person” that is recognized whenever an object
classified as person changes its posture to “laying” and remains in that posture for
a given period.
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In particular, people detection is achieved by using the tracking algorithm de-
scribed in Chapter 5, that provides, frame-by-frame, the list of objects O that can
be classified as potential people. For posture classification (main topic of this ch-
pater), the probabilistic classifier we propose exploits both frame-by-frame infor-
mation of people’s silhouettes and past information from the associated tracks in
order to overcome overlapping and cluttering problems.

The novelty of the proposed approach is the definition of two steps:

1) a posture classification performed frame-by-frame: this classification ex-
ploits simple visual features, i.e. projections of the blob’s silhouette (or VO)
onto the principal axes, and a machine learning process to create Probabilis-
tic Projection Maps (PPMs) used in a Bayesian classifier.

2) a “temporally integrated” posture classification exploiting tracking informa-
tion: this is motivated by the concept of “posture state” defined in a state-
transition graph that takes into account for the classification the reliability of
the track and acquired knowledge of the people’s average behavior in chang-
ing their posture.

This posture classifier is used to detect alarming situations such as a person
falling down and laying down for a long time. We will show that the proposed
approach is capable of reliably recognizing also postures of people that differ from
those used in the training set, provided they are of similar body build, and we will
demonstrate that it is quite robust, even in the case of people partially occluded by
furniture or other people.

6.2 Related works

There are many reference surveys in the field of human motion capture (HMC) and
Human behavior analysis (HBA), for instance, the ones by Cedras and Shah [106],
Gavrila [107], Aggarwal and Cai [108], and Moeslund and Granum [109], or more
recently, Wang et al. [110].

The basic aim of these models and algorithms is to extract suitable features
of the motion and the visual appearance of people (e.g., shape, edges, or texture),
in order to classify and recognize their behavior. Many works employ a precise
reconstruction of the body model in order to detect the motion of each part of the
body. This is normally done for virtual reality and computer graphics application
with people moving in structured environments [111].

In surveillance, people are normally not collaborative, they are moving in clut-
tered scenes interacting each others and with objects (e.g., people carrying packs
or sitting on a bench), and the acquisition is usually done with large-FOV cameras
(resulting in images acquired with low resolution). In such cases, useful features
that can be analyzed are the people’s trajectory and the changes in motion status
and direction. For this reason, there is a growing research activity in trajectory
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analysis. For instance, in [112] classification of vehicle trajectory is done in or-
der to extract abnormal trajectories. In [113] Abstract Hidden Markov Models
are exploited to recognize special trajectories and monitor special behaviors in in-
door areas. In [114] trajectories of people walking in outdoor are represented by
graphs, and trajectory comparison is done by means of graph matching. Some
works as [33, 115] deal with single interaction between pairs of trajectories and
typically refer to very simple interactions (such as the “follow”, or “approach-talk-
continue together”) or divergence to typical paths.

All these techniques are employed to classify a given trajectory as being sig-
nificant (abnormal) or normal and, based on that, describe the people’s behavior.
Richer information can be extracted from persons’ appearance, posture and gait.
In recognizing behavior based on a person’s shape there are two main approaches.
The static one is concerned with spatial data, one frame at a time, and compares
pre-stored information (such as templates) with the current image. The goal of
static recognition is mainly to recognize various postures, e.g., pointing [116,117],
standing and sitting [118]. The second type of approaches is dynamic recognition
where here temporal characteristics of moving target are used to represent its be-
havior. Typically, simple activities such as walking are used as the test scenarios.
Both low and high level information is used. Low-level recognition is based on
spatio-temporal data without much processing, for instance, spatio-temporal tem-
plates [117, 119] and motion templates [120]. High level recognition are based on
pose estimated data and include silhouette matching [121], HMMs [122, 123] and
neural networks [124]. In the work of [122] the idea of representing motion data by
“movements” (similar to phonemes in speech recognition) is suggested. This en-
ables to compose a complex activity (“word”) out of a simple series of movements
(“phonemes”). An HMM is used to classify three different categories: running,
walking and skipping. This type of high level symbolic representation is also used
in [117] who automatically build a “behavior alphabet” (a behavior is similar to a
movement) and model each behavior using an HMM. The alphabet is used to clas-
sify different types of actions in a simple virtual reality game and to distinguish
between the playing style of different subjects. Another successful application of
this symbolic approach is in recognizing signed-language [123].

Recently an increasing number of computer vision projects deal with detec-
tion and tracking of human posture as well. An exhaustive review of proposals
addressing this field was written by Moeslund and Granum in [109], where about
130 papers are summarized and classified according with several taxonomies.

The posture classification systems proposed in the past can be differentiated
by the more or less extensive use of a 2D or 3D model of the human body [109].
In accordance with this, we can classify most of them into two basic approaches
to the problem. From one side, some systems (like Pfinder [4] or W4 [125]) use a
direct approach and base the analysis on a detailed human body model: an effective
example is the Cardboard Model [126]. In many of these cases, an incremental
predict-update method is used, retrieving information from every body part.

Many systems use complex 3D models, and require special and expensive
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equipment, such as 3D trinocular systems [127], 3D laser scanners [128], ther-
mal cameras [129], or multiple video cameras to extract 3D voxels [130]. Due to
the need for real time performance and low cost systems, we discarded complex
and/or 3D expensive solutions. In addition, these are often too constrained to the
human body model, resulting in unreliable behaviors in the case of occlusions and
perspective distortion, that are very common in cluttered, relatively small, environ-
ments like a room.

A second way consists in an indirect approach that, whenever the monitoring
of single body parts is not necessary, exploits less, but more robust, information
about the body. Most of them extract a minimal set of low level features exploited
in more or less sophisticated classifiers. One frequent example is the use of neural
networks, as in [131, 132]. However, the use of NN presents several drawbacks
due to scale dependency and unreliability in the case of occlusions. Another inter-
esting example of this class is the analysis of AC-DCT coefficients in the MPEG
compressed domain [133]: this has proven to be also insensitive to illumination
changes, but the reported examples only classify different standing postures (with
different pointing gestures), while we are interested in classifying very different
postures, such as standing up and laying on the floor. Eventually, in [134], a Uni-
versal EigenSpace approach is proposed: this presents insensitivity to clothing, but
it assumes that most of the possible postures (with most of the possible occlusions)
have been learned, and this is far from being realizable.

Another large class of approaches are based on human silhouette analysis.
The work of Fujiyoshi et. Al. [135] uses a synthetic representation (Star Skeleton)
composed by outmost boundary points. A similar approach is proposed in [136]
where a skeleton is extracted from the blob by means of morphological operations
and then processed using a HMM framework. This approach is very promising
and has the unique characteristic of also classifying the motion type, but it is very
sensitive to segmentation errors and in particular to occlusions. Moreover, no scal-
ing algorithm to remove perspective distortion is proposed making this approach
unfeasible for our target application.

Another approach based on silhouette analysis is reported in [137, 138] where
a 2D complex model of the human body is matched with the current silhouette
by genetic algorithms. In addition to the problems of segmentation errors and
occlusions, this approach also suffers from dependency of the model on the view.
In [125], Haritaoglu et al. add to W 4 framework some techniques for human body
analysis using only information about the silhouette and its boundary. They first
use hierarchical classification in main and secondary postures, processing vertical
and horizontal projection histograms from the body’s silhouette. Then, they locate
body parts on the silhouette boundary’s corners.

Our approach is similar to this one, as regards projection features, but, differ-
ently from it, is not based on a-priori defined model, but exploits a learning phase
to build a probabilistic model of body postures.
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6.3 Projection Histograms

The posture classification is based only on the appearance of the person’s body
and, in particular, on its silhouette. Thus, a reliable blob extraction algorithm must
be used to provide this input to the classifier.

Generalzing, we assume to have a lower level module able to provide us, for
each frame t, with a list Ot = {Ot

i} of Objects (Oi), pre-classified as people.
Each person/object is associated to a blob mask:

B = {b(x, y) ∈ {0, 1}, x ∈ [0, Bx − 1], y ∈ [0, By − 1]} (6.1)

where Bx and By are the bounding box sizes, and b(x, y) = 1 if the pixel in the
bounding box of (x, y) coordinates belongs to the person’s blob and 0 otherwise.

The extracted objects are processed by a tracking module that must ensure the
maintenance of the tracks also in the case of occlusions due to static or moving
objects (e.g., furniture or other moving people). The information extracted by the
tracking module can be exploited also by the posture classifier, as we will detail in
the following. In the matter of fact, there is no reliable frame-by-frame classifier
based on single-perspective images able to deal with occlusions, since it can not
classify something that is not visible (such as a person behind another person).

In accordance with the blob definition reported in Eq. 6.1 and similarly to
[125], we can define the vertical and horizontal projection histograms (or projec-
tions), respectively θ and π, as:

θ(x) =
By∑
y=0

b(x, y) ; π(y) =
Bx∑
x=0

b(x, y) (6.2)

In practice, θ and π are two feature vectors associated to the blob B. A value
(or bin) of θ (π) at the position x (y) represents the thickness of the silhouette in
the vertical (horizontal) direction. Therefore, a blob B has associated a measure
PhB , (θB, πB).

6.4 Frame by Frame Classification

According with the literature, we define four main postures:

ΓM = {STanding, CRouching, SItting, LAying} (6.3)

Since our approach is based on the histograms obtained by projecting the sil-
houette onto x and y axis, and since the silhouette of people sitting with a frontal,
left or right view are very different, we have split each state into three view-based
subclasses (frontal, left-headed, and right-headed), thus obtaining twelve view-
based postures:

ΓV B = {STF , STL, STR, CRF , CRL, CRR,
SIF , SIL, SIR, LAF , LAL, LAR}

(6.4)
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Figure 6.1: Example of projection histograms.

The approach we will describe in the following is applied by the system over the
twelve ΓV B . Nevertheless, we will refer in the following to the main postures only
(calling them generally postures) for the sake of simplicity.

Figure 6.2: Comparison of the projection histograms obtained by preserving or removing
shadows

This classifier exploits the intrinsic characteristic of the silhouette to recall the
person’s posture and it is based on projection histograms that describe how the
silhouette’s shape is projected on the x ad y axes. An example of projection his-
togram is depicted in figure 6.5(a). Moreover, in Fig. 6.2(d) and 6.2(e) the pro-
jection histograms obtained by including shadows or removing them are shown:
as it has been already stated, shadows are particularly problematic for projection
histograms based on blob’s silhouette, and thus they must be effectively removed.

Though projection histograms are an approximation w.r.t. a complex 3D model,
they have proven to be sufficiently detailed to discriminate between the postures we
are interested in. However, these descriptors suffer two limitations:

• they depend on the silhouette’s size;
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• they are too sensitive to the unavoidable non-rigid movements of the human
body.

The first drawback can be overcome with an initial scaling correction, while the
second needs to compare the projection histograms to a suitable model, capable of
generalizing the peculiarities of a training set of postures.

The following subsections will report the proposed solutions to these two prob-
lems.

6.5 Scaling Procedure

Due to the perspective, the size of the detected VO can differ depending on the dis-
tance from the camera. This is particularly true in the case of indoor environments
in which the objects moving in the scene are relatively close to the camera. To get
rid of this problem we introduced a scaling procedure.

A similar problem has been addressed in other works. For example, in [125] a
normalization factor has been used to scale the histograms, but it does not take into
account the actual distance of the blob from the camera and it is thus very sensitive
to different postures. In [132], the normalization phase is mandatory to feed similar
inputs to the neural network, but it has the drawback of considering all the persons
as standing. Eventually, the authors of [133] developed a resizing procedure that
scales all the images to the same size: this is because they are more interested in
detecting where the person points than in classifying his/her posture. Moreover,
this example does not take into account the actual 3D position of the person.

Thus, to be reliable, the scaling must be correlated with the distance of the
objects from the camera in the 3D space. Assuming that the camera is fixed, we
exploit camera calibration to compute the distance d between the object and the
camera. Choosing a suitable normalization distance D, we define the rate sf as a
scale factor

sf = d/D (6.5)

Applying the scale factor sf to the blobs is analogous to “moving” all the detected
objects to a fixed distance D from the camera. The d measure depends on the
position of the support point SP , that is the contact point of the object with the
Z = 0 ground plane. SP can be described by the (xSP , ySP ) coordinates in
the image plane and the (XSP , YSP , ZSP ) coordinates in the real 3D world, with
ZSP = 0. In the case of a person, normally SP corresponds with the position of
the feet, but this is not necessarily true in the case of a person laying down on the
floor.

Assuming that the camera’s point of view is frontal, SP could be easily com-
puted as the point with the maximum y coordinate (see Fig. 6.3). If more points
present the same y-coordinate, SP could be randomly selected or computed as the
middle point. Once we obtained the SP image coordinates, we can compute the
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Figure 6.3: Model for perspective effect removal. (a) lateral view and (b) upper view of
the pin-hole camera model. Figure (c) reports the original frame, whereas (d) shows the
undistorted image obtained through an homography on plane Z = 0.

world coordinates of this point by using the projection equations of the pin-hole
camera model.

Having the height h of the camera with respect to the floor, the focal lengths
fx and fy, and the tilt angle τ obtained by camera calibration, we can compute the
coordinates of the support point SP :

YSP = h · tg(α), XSP =
xSP

fx
· YSP (6.6)

with:

β = arctan
(

ySP
fy

)
, α = π

2 − τ − β, d =
√

X2
SP + Y 2

SP (6.7)

After the scale factor, we assume that the sizes Bx and By of the blob’s bound-
ing box have been normalized. Obviously, this does not mean that all the silhou-
ettes should have the same sizes (as in the case of a person in the standing or
crouching position).

6.6 Support Point Tracking

The correct estimation of SP (support point) position also during an occlusion is a
key requirement for correct people scaling. The SP is normally coincident with the
feet’s position, but it could differ when the person is lying down on the floor. If the
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camera has no roll angle and the pan angle is low enough, the support point can be
estimated taking the maximum y coordinate and the average of the x coordinates
of the lowest part of the blob (Fig. 6.3).

This simple algorithm fails in presence of occlusions: if the occlusion includes
the feet of the person, in fact, the y coordinate of the support point becomes not
valid. The support point can not be computed neither on the blob nor on the prob-
ability mask: the first because the blob is incomplete and the second because the
computation is imprecise and unreliable, especially in body parts with frequent
motion such as the legs. To solve this problem, a dedicated tracking algorithm
for the support point coordinates has been developed. Two independent constant-
velocity Kalman filters are adopted, the first is a standard Kalman filter on the x
coordinate, while the second Kalman filter for the y coordinate of SP is used in
two modalities: when the person is visible the filter considers both the forecast and
the measure (as usual), while when the person is occluded the measure of the y
coordinate is ignored and the filter exploits only the forecast to estimate the current
position.

The two filters have the same parameters and exploit the constant velocity as-
sumption. Using the well-known notation of the discrete Kalman filter:

x(k + 1) = Φ · x(k) + v
z(k) = H · x(k) + w

(6.8)

The adopted matrices are:

x(k) =
(

posk

velk

)
H =

(
1 −1
1 0

)
Q =

(
0 0
0 γ

)
z(k) =

(
posk−1

posk

)
Φ =

(
1 1
0 1

)
R =

(
λ 0
0 λ

) (6.9)

The Measurement Noise Covariance Matrix R of the Gaussian variable w is
computed assuming that the two measured positions could be affected by noise
that is frame-by-frame independent and time-constant, while the Process Noise
Covariance Q of the variable v assumes that the process noise affects only the
velocity terms. In our implementation, the parameters are set to λ = 200 and γ =
0.5.

The results obtained by the introduction of these two independent filters during
a strong occlusion are visible in 6.4.

Let the SP position and the homography of the floor plane to be known, the
distance between the person and the camera can be computed. Supposing that the
image of the person entirely lies on a plane parallel to the camera, the blob and the
tracking images can be projected into a metric space by a linear scaling procedure.

6.7 Probabilistic Projection Maps (PPMs)

The second problem of the classification based on projection histograms is that it
is too sensitive to non-rigid movements of the human body model. This problem
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Figure 6.4: SP tracking with Kalman Filters. Trajectories of SP estimated over the blob
(black color) and tracked with the Kalman Filter (white color)

has been addressed by constructing the Projection Probabilistic Maps (PPMs) with
a supervised machine learning phase [139]. By means of manual annotation of the
videos, the learning phase is able to build a model that represents the memory of
the people’s appearance in each posture.

The probabilistic approach included in the PPMs allows us to filter the dis-
tracting moving parts of the body (such as the arms and the legs, not important for
posture classification), thus solving the above reported problem. In fact, due to the
non-rigid motion of the human body, these parts are likely to distract the classifier,
resulting in misclassification of the posture. It must be pointed out (and it will be
clearer further on) that this probabilistic approach based on a learning phase shifts
the problems to the completeness of the training set. We will demonstrate that, as
soon as the training set contains a wide enough variety of samples, this approach
achieves an average performance of 95% or above in correct classification.

Given a generic set of classes of postures C = {Ci}, i = 1, ...,K, the
probability to belong to the class Ci is:

P (CB = Ci|PhB) =
P (PhB|CB = Ci)p(Ci)

K∑
j=1

P (PhB|CB = Cj)p(Cj)
(6.10)

The a-priori probabilities p(Ci) can be estimated with respect to the habits of the
observed person and the type of the supervised room (e.g., in a kitchen, people stay
more often standing or sitting than laying down, whereas, in the case of a bedroom,
it is more likely vice versa), or can be dynamically modified in accordance with the
history of the blob B. For simplicity, we now assume p(Ci) equal for all the classes
Ci and independent from the blob B, that is:

p(Ci) =
1
K

, i = 1, ...,K (6.11)

The conditional probability of having the histograms PhB assumed to be in the
posture class Ci can be computed with the hypothesis that the θ and π measures
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are independent. Thus:

P (PhB|CB = Ci) = P (θB ∧ πB|CB = Ci) =
= P (θB|CB = Ci) · P (πB|CB = Ci)

(6.12)

If we assume the p(Ci) as a constant and neglecting the normalization factor, the
Eq. 6.10 is the similarity function that describes the similarity between the current
silhouette and the model of the silhouette in the posture Ci.

In order to calculate Eq. 6.12, the similarity between each projection histogram
and the correspondent model must be computed. In a previous work [140], we
tested the efficacy of PPMs by computing, in a very simple way, an average dis-
tance (arithmetic mean) between the current projection θB (or πB) and the models
given by the PPMs.

According to the probability theory and considering θ and π projection as vec-
tor of approximately independent measures, the two terms of Eq. 6.12 can be
computed as the probability of intersection of the events:

P (θB|CB = Ci) = P

(
Bx−1⋂
x=0

(θB(x)|CB = Ci)
)

=

=
Bx−1∏
x=0

P (θB(x)|CB = Ci)

P (πB|CB = Ci) = P

(
By−1⋂
y=0

(πB(y)|CB = Ci)

)
=

=
By−1∏
y=0

P (πB(y)|CB = Ci)

(6.13)

The probability distributions of the events P (θB(x)|CB = Ci) and P (πB(y)|CB =
Ci) are estimated through a supervised learning phase, during which two 2D func-
tions Θi(x, y) and Πi(x, y) for each class Ci are created as follows:

P (θ(x) = y|Ci) = Θi(x, y) ; P (π(y) = x|Ci) = Πi(x, y) (6.14)

where Θi(x,−) and Πi(−, y) are the probability distributions of θ(x) and π(y),
respectively, assuming to be in the class Ci and we will refer to them as PPMs
hereinafter.

The supervised learning phase for the construction of the above mentioned
maps is performed exploiting a training set TS of Ti 2D blobs referred to the i-th
class TS =

{
Bt

i

}
, t = 1, ..., Ti, where Bt

i are blob masks defined similarly to
Eq. 6.1. For each Bt

i the couple Pht
i = (θt

i(x), πt
i(y)) of projection histograms is

computed as in Eq. 6.2. Then, we construct Θi(x, y) and Πi(x, y) as follows:

Θi(x, y) =
1
Ti
·

Ti∑
t=1

g
(
θt
i(x), y

)
; (6.15)

Πi(x, y) =
1
Ti
·

Ti∑
t=1

g
(
x, πt

i(y)
)
. (6.16)
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Figure 6.5: Example of PPMs compared with projection histograms (a), sparse PPMs (b),
and dense PPMs (c) for Standingfrontal posture. Brighter colors correspond to higher
probabilities.

Please note that we cannot generate a PPM by either simply averaging each
training set contribution, or using a Gaussian distribution, since the measures com-
puted for each sample (i.e., for each class) are multimodal. Thus, the g(s, t) func-
tion must take into account all the variations of the samples. A possible g(s, t)
function could be:

g(s, t) =
{

1 if s = t
0 otherwise

. (6.17)

This function simply accumulates all the training set information without gen-
eralization and it can be acceptable only if we have an almost infinite training set.
In fact, also if the current histogram is very similar to those used during the learn-
ing phase, the probability (computed as the product of Eq. 6.13) could be zero if
only one bin has a value which has never occurred during the training and this is
due to the sparseness of the PPMs.

Consequently, the function g(s, t) should be less “rough”. We adopted the
following function:

g(s, t) =
1

|s− t|+ 1
(6.18)

The number 1 at the denominator is inserted to avoid dividing by zero. Eventu-
ally, the values of the maps obtained through Eq. 6.18 must be normalized to obtain
probability distributions. A comparison between the maps created with these two
g(s, t) functions is reported in Fig. 6.5(b)-(c).

Once the PPMs are created during the learning phase, at the testing stage the
projection histograms obtained by each blob B are compared as described with
the PPM of each class and the resulting posture for the blob B is the one that
maximizes the conditional probability reported in eq. 6.10, i.e.:

postureB = arg max
i=1,...,K

P (CB = Ci|PhB) (6.19)

Eventually, Fig. 6.6 shows a snapshot of the environment we used for training.
Given a training video shot with a single person, we provide a simple manual
annotation of the posture of the actor.
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Figure 6.6: Snapshot of the training procedure of our system.

6.8 Track-based Classification

The previous section reported the frame by frame classifier. We apply it over a large
test set of videos and the achieved results show a good robustness of the approach
and a very high correct classification rate [139], at least in ideal situations when
the blobs are extracted perfectly. However, by exploiting knowledge embedded in
the tracking phase, also many possible classification errors due to the imprecision
of the blob extraction can be corrected. These errors can arise when:

• there are frequent transitions between a posture and another: in these cases
the classifier’s reliability decreases;

• there are occlusions: in these cases the person’s silhouette cannot be entirely
viewed and the projection histograms become less reliable;

• the illumination conditions change: blob extraction based on background
suppression is severely affected by this problem, but this can be partially
solved by exploiting the tracking.

The former two cases are unavoidable due to person’s behavior and the scene,
and can be solved only at a higher level, whereas the latter is mainly due to the
lower level tasks. In our system, all these cases are accounted for by defining a
state-transition graph in which we use two states for each posture, one stable and
the other unstable (corresponding the above cases).

The posture state-transition graph is a graph defined as Posture STG =
(E,N), where the set of nodes N includes both the stable states and the unstable
states, respectively Si and si, with i = 1, ...,K. E is the set of arcs representing
the allowed transitions between two states. Fig. 6.7 reports the Posture STG for
the four main classes reported in Sec. 6.4. A similar graph can be derived for all
the 12 subclasses.

The transitions between states are guided by two inputs:

• postureB , i.e. the output of the frame by frame classifier of eq. 6.19;

• confidence (shortened with conf ), i.e. a boolean value that gives a measure
of the reliability of the frame by frame classification (high means a reliable
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Figure 6.7: The posture state-transition graph for the four main postures.

classification, low unreliable). conf is obtained by thresholding the confi-
dence measure of equation 5.12

Thus, the transitions of the STG can be modelled as follows:

Si → Si ⇔ (conf = high) ∧ (posture = i) (6.20a)

Si → si ⇔ (conf = low) ∨ (posture 6= i) (6.20b)

si → Sj ⇔ (conf = high) ∧ (posture = j) (6.20c)

si → si ⇔ (conf = low) (6.20d)

Si is the stable state of the posture i that is maintained whenever the classifier
confirms the posture i with a good confidence (Eq. 6.20a). If the confidence de-
creases, the classification result is no more reliable, but we maintain the posture
estimate by moving into the correspondent unstable state si (Eq. 6.20b). This can
be due to the blob extraction errors or to blob occlusions previously mentioned.
Moreover, in order to filter single-frame errors, we prevent the direct transition
between two stable states (indeed, the transition Si → Sj is not allowed). Transi-
tions between two stable states must pass through an unstable state, at least for one
frame. Obviously, this introduces a short delay in posture change detection. Please
note that the loops on the states (Eqs. 6.20a and 6.20d) are not reported in Fig. 6.7.

In this general model, all posture transitions are allowed and with the same
probability. Nevertheless, in real cases some transitions are quite unlikely. For in-
stance, a direct transition between “standing” and “laying” posture is quite improb-
able. To include this concept we could inhibit some transitions between unstable
and stable states or we could re-formulate the p(Ci) of equation 6.10. In practice,
we could consider p(Ci) as dependent on the current state Cj . As an example, we
could assume a fixed transition probability table as the one reported in Fig. 6.8.

This table can be the result of a study of people’s average behaviors. It can
obviously be improved by exploiting the training phase to fill in these tables.
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Current state Cj

ST CR SI LA

p(ST |Cj) 0.30 0.25 0.25 0.10
p(CR|Cj) 0.30 0.25 0.25 0.30
p(SI|Cj) 0.30 0.25 0.25 0.30
p(LA|Cj) 0.10 0.25 0.25 0.30

(a) Example of conditional probabilities to go
into a state Ci coming from a state Cj

STR STF STL

p(STR|Cj) 0.15 0.10 0.05
p(STF |Cj) 0.05 0.15 0.10
p(STL|Cj) 0.10 0.10 0.10
p(CRx|Cj) 0.10 0.10 0.10
p(SIx|Cj) 0.10 0.10 0.10
p(LAx|Cj) 0.033 0.033 0.033

(b) Zoom in on the main class ST (x =
R, F, L)

Figure 6.8: An example of p(Ci) dependent on the class.

6.9 HMM Framework for Posture Classifier

Despite the improvements given by the use of appearance mask instead of blobs,
a frame-by-frame classification is not reliable enough. The adoption of a STG
can slightly refine some spurious errors. However, the temporal coherence of the
posture can be exploited to improve the performance: in fact, the person’s posture
changes slowly and through a transition phase during which its similarity with the
stored templates decreases. To this aim, a Hidden Markov Models formulation has
been adopted. Using the notation proposed by Rabiner in his tutorial [141], we
define the followings sets:

• The state set S, composed by four states:

S = {Si, i = 1..N} = {S1, S2, S3, S4} = MainPostures (6.21)

• The initial state probabilities Π = {πi}: the initial probabilities are set to
have the same value for each state (πi = 1

N . By introducing the hypothesis
that a person enters a scene standing, it is possible to set the vector Π with all
the elements equal to 0 except for the element corresponding to the standing
state (set to the value 1). However, the choice of the values assigned to the
vector Π affects the classification of the first frames only, and then it is not
relevant.

• The matrix A of the state transition probabilities, computed as a function of
a reactivity parameter α. The probabilities to remain in the same state and to
pass to another state are considered equal for each posture. Then, the matrix
A has the following structure:

A = A(α) = {Aij} , Aij =
{

α i = j
1−α
N−1 i 6= j

(6.22)

In our system we use α = 0.9.
Then, the Observation Symbols and Observation Symbol Probability distribu-

tion B have to be defined. The set of possible projection histograms is used as set
of observation symbols.
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Even if the observation set is numerable, the matrix B is not computed explic-
itly, but the values bj for each state (posture) j are estimated frame-by-frame using
the above defined Projection Probabilistic Maps:

bj = Pj = P ( P̂H
∣∣∣ posture = Sj). (6.23)

Then, at each frame, the probability of being in each state is computed with the
forward algorithm [141].

At last, the HMM input has been modified to keep into account the visibility
status of the person. In fact, if the person is completely occluded, the reliability
of the posture must decrease with time. In such a situation, it is preferable to set
bj = fract1N as the input of the HMM. In this manner, the state probability tends
to a uniform distribution (that models the increasing uncertainty) with a delay that
depends on the previous probabilities: the higher the probability to be in a state Sj ,
the higher the time required to lose this certainty. To manage the two situations
simultaneously and to cope with the intermediate cases, (i.e., partial occlusions), a
generalized formulation of the HMM input is defined:

bj = P (P̂H |Sj ) · 1
1 + nfo

+
1
N
·

nfo

1 + nfo
(6.24)

where nfo is the number of frames for which the person is occluded. If nfo is zero
(i.e. the person is visible), bj is computed as in Eq. 6.23, otherwise the higher the
value of nfo, the more it tends to a uniform distribution.

6.10 Experimental Results

6.10.1 Frame by Frame classifier and STG

The system has been developed to meet real-time constraints; the goal is to process
a sufficient number of frames per second to be reactive and adaptive enough for
possible alarms. The classification with the proposed method is not time consum-
ing and the average performance in the tested videos on a standard PC (Pentium
4 - 3 GHz) is about 15 fps, including also the video acquisition, the segmentation,
and the tracking steps.

For the benchmark suite, we use a large set of videos acquired in a room (where
the camera has been calibrated) in different days and with different people. Table
6.1 reports some examples under different illumination conditions and with differ-
ent people with different dresses. The benchmark has been selected in order to
perform four tests:

1) the testing video is the same as that used for the training: this can be useful
in the case of video surveillance applications for home automation in which
we could suppose an initial training performed in the specific context and on
the specific person;
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Training sequence & test sequence Test sequence of type 2
of type 1 (384x288) (360x270)

Test sequence of type 3 Test sequence of type 4
(384x288) (360x270)

Table 6.1: Some examples from the benchmark suite.

2) the person used in the training video is the same as the testing videos’, but
with different clothing and in different conditions; this demonstrates the in-
sensitivity of our system to clothing as in [134]

3) different persons (but with similar body build)1 are used for the testing videos;

4) same as 3, but including occlusions to complicate the posture classification.

A detailed test of the accuracy of the system accounts for the number of cor-
rectly classified postures w.r.t. the total number of frames. Table 6.2 reports the
average accuracy (measured as number of postures correctly classified divided by
the total number of reliable - with high confidence - ground-truthed postures) for
the four types of test above mentioned. Table 6.3 reports the confusion matrix (in
percentage) for the four main postures obtained by averaging among the four types
of experiments.

In addition, the graph in Fig. 6.9 compares the results (on the video of type
1), with and without the state-transition graph, w.r.t. the ground-truth. The graphs

1as is clear, a classification based on the silhouette’s shape is affected by the people appearance,
thus children and adult people, for instance, require different PPM models. Nevertheless, it is not
sensitive to the position of the people in the room due to the calibration-based scaling.
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Test Type Number Average Accuracy Postures
of frames W/o STG With STG St Si La Cr

Type 1 1742 98.50% 99.40% 28% 21% 40% 11%
Type 2 18222 96.90% 99.57% 6% 32% 42% 20%
Type 3 6023 90.40% 92.20% 32% 21% 22% 25%
Type 4 3141 90.80% 97.75% 35% 12% 26% 27%

Table 6.2: Accuracy for each test type.

Classified G.T. posture
as St Si La Cr
St 94% 0% 0% 3%
Si 5% 99% 0% 3%
La 0% 0% 100% 3%
Cr 1% 1% 0% 92%

Table 6.3: Confusion matrix (in percentage) averaged over the four test types.

Figure 6.9: Graph reporting the comparison on the video of the test type 1.

show the postures on the ordinates (where Nc stays for “not classified”) and the
frame number on the abscissas. The upper graph (a) reports the manual ground-
truth classification, while the two successive graphs are the classification obtained
by using only the frame by frame classifier (b) or the VO-based classifier with the
track-based STG (c). The graph at the bottom (d) reports, frame-by-frame, the
confidence value. This value is then used to highlight (with slashed rectangles), in
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Figure 6.10: Graph reporting the comparison on the video of the test type 4.

the above graphs, the sections of the video in which confidence says that the track
has a low reliability.

In our tests, we set the BFR threshold to 0.7%. The BFR threshold depends
on the requirements of the system and it can be set as a trade offs between the
timeliness and the reliability of the responses.

The graph in Fig. 6.10 compares the results on the video of type 4, with and
without the state-transition graph, w.r.t. the ground-truth. In particular, intervals in
which confidence is low correspond to object occlusions. In this graph the contri-
bution of the STG is more evident, that, in presence of occlusions, freezes the old
state and avoids misclassification.

As it is possible to see from Tables 6.2 and 6.3 and graph on Fig. 6.9, the ac-
curacy achieved is very high and the use of the state-transition graph significantly
improves the results, especially in the more challenging case in which occlusion
severely affects the performance of the static, frame by frame classifier (see for
instance, frame from 2299 to 2348 in Fig. 6.9). As foreseeable, the more critical
posture is crouching that is often confused with the other postures (see the con-
fusion matrix) and the worst result is obtained in the test of type 3 in which the
crouching posture is dominant.
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6.10.2 Results of the HMM approach

Figure 6.11: Comparison between the frame-by-frame posture classification (a) and the
probabilistic classification with HMM (b) in presence of occlusions (c).

In Fig. 6.11 the benefits of the introduction of the HMM framework are evi-
denced. The results are related to a video sequence in which a person passes behind
a stack of boxes always in a standing position. During the occlusion (highlighted
by the gray strips) the frame-by-frame classifier fails (it states that the person is
lying). On the other hand, through the HMM framework, the temporal coherence
of the posture is preserved, even if the classification reliability decreases during the
occlusion.

6.11 Discussion and Conclusions

In-house video surveillance has some peculiarities that must be taken into account
to develop a reliable and efficient system. We can summarize the distinctive prob-
lems to be addressed in in-house video surveillance as in Tab.6.4.

Only by taking into account all these aspects is there very high accuracy per-
formance of the system (in terms of correctly classified postures). We tested the
system over more than 2 hours of video (provided with ground-truths), achieving
an average accuracy of 97.23%. The misclassified postures were mainly due to
confusion between sitting and crouching postures.



6.11 Discussion and Conclusions 119

PROBLEM CAUSE EFFECT SOLUTION
large shadows diffuse and

close sources of
illumination

shape distor-
tion and object
merging

shadow detec-
tion in the HSV
colour space
(Section 2.3)

deformable ob-
ject model

non-rigid hu-
man body

shape-based
algorithms are
misled

probabilistic
tracking based
on appear-
ance models
(Chapter 5)

track-based oc-
clusions

position of the
camera; inter-
action between
humans

tracking prob-
lems; shape-
based algo-
rithms are
misled

probabilistic
tracking based
on appear-
ance models
(Chapter 5)

object-based oc-
clusion

presence of
many objects

scale-dependent
shapes

position and
distance of the
camera

size of people
depends on their
distance from
the camera

camera calibra-
tion and body
model scaling
(Section 6.5)

object displace-
ment

non static scene reference back-
ground changes

statistical and
knowledge-
based back-
ground model
(Chapter 2)

full coverage of
people’s move-
ments

non-opened,
complex envi-
ronments

impossibility
to cover all the
movements with
a single view

camera handoff
management
(Chapter 8)

Table 6.4: Summary of in-house surveillance problems, with their cause and effect, and the
solutions we propose
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Chapter 7

Face detection

7.1 Video-Surveillance and Biometry

Video-surveillance and Biometry are two known application fields of computer en-
gineering, whose products are playing an important role in the ICT markets. The
market of Videosurveillance systems comprises hardware platforms, software and
intranet/internet connections for video transport. Just only in this last field, in
a recent relation IMS Research had predict a continuous and strong evolution of
products of network video over IP. For the next five years they estimate an increas-
ing of the 28,4% for the network cameras and of the 30,3% for the video servers.
Network cameras and the video servers will reach sales for about 150 million of
Euros in 2008 [142].

Nevertheless, there is still a large gap between the commercial of-the-shelf
products and the research activity. The market of videosurveillance products has
grown up in an impressive way after the September 11 events, even if most of
the market uses the term video-surveillance to name CCTV systems composed by
(several) cameras connected with a video server to a control centre, allocating all
the role of intelligent control to human observers.

On the other hand, the academic research in Computer Vision-based video
surveillance is increasing up to its expectation in the last decade especially due
to the increased power of low cost computing systems. They allow the exploita-
tion of complex probabilistic models to detect moving shapes and to understand
their behavior, of precise 3D geometrical models to reconstruct the 3D scene using
the field of views of more cameras. For this reason, interesting results in moving
object segmentation from single or multiple static cameras [1, 13, 94] in detecting
the presence of humans, motion trajectory and interaction [143] and their behavior
computation have been proposed in indoor and outdoor environments.

Privacy laws are indeed very detailed about the possible use and adoption of
video surveillance systems. In Italy, for instance, the “Decalogo della Privacy1”
avoids the use of videosurveillance systems a part from security purposes man-

1Provvedimento Generale del Garante, 29/04/2004)
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aged by police. Private videosurveillance systems can be installed only if they
guarantee to not identify the single individuals. Therefore, most of these systems
are developed for generic control, for dangerous situation detection or for starting
the storing of frames when possible interesting situations arise, without the people
identification. They can be adopted for security and safety purposes as a possible
deterrent to criminality or to store data that will be analyzed possible in case of
investigation by human experts. In this case, the research focuses on models and
methodologies to prune data for useless parts, to annotate meaningful parts in order
to allow a smart indexing and querying in enormous quantities of stored videos.

In another context, instead, biometric systems have been evolved in last years.
Biometry is the discipline that aims at assessing the identity of an individuals by
means of precise measures of physiological, anthropometric of behavior features.
Some examples of these features are fingerprint, hand geometry, iris patterns (Phys-
ical Biometrics), handwriting, signature, speech, and gait (Behavioral Biometrics).
Biometry is an ancient science: for example, the fingerprint analysis has been de-
fined more than a century ago. It is exploited for dual purposes: authentication, that
means a 1-to-1 match to verify a positive claim of identity, and identification (or
recognition) that is instead a 1-to-n match to search in a watching list (or gallery)
the presence of an individual whose features have been measured, without claim of
identity (or that could be a negative claim of identity, since an individual could try
not to be identified).

Biometric systems differ in the type of measured features; among them, the
face recognition systems are growing their importance in the market. The total
biometrics market this year will reach about $1.2 billion, with face-recognition
systems accounting for $144 million, according to projections by the International
Biometric Group, a research company in New York. Face-recognition technology
is one of the least intrusive biometrics and potentially the most powerful because
it can make use of a huge amount of existing data: there are 1.2 billion digitized
photos of people in databases around the world. Furthermore, video or image
analysis is not invasive; face recognition can be applied to collaborative people
(e.g., for authentication or for passing through a controlled gate as in airports) or
to non collaborative people (e.g., to compare photos with the archives of police).
Moreover it is very natural since it corresponds to the main human approach to
recognition, thus automatic systems can be used as an initial screaming that can be
validated by human expert analysis.

Some of the earliest research on machine recognition of faces can be traced
back to the 1960s at a company called Panoramic Research, Inc. in Palo Alto,
California, one of many companies springing up in California at the time to conduct
research in what was later termed artificial intelligence.

Although many face recognition systems are available in the world worked and
currently used in support for investigation, their results in terms of FAR and FDD
are still limited. Nevertheless their adoption is very important for crime prevention.
One of the first examples was the FaceIt technology, installed in September 1997 as
part of an Integrated Passenger and Luggage Security System of Malaysia Airport,
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which reconciles passengers with their luggage from check-in to boarding to pre-
vents terrorists from checking luggage and not boarding the plane. Most of them
work on frontal views only and can be easily falsified by artifacts (e.g., moustaches
or glasses) or are sensitive to the age changes and so on. New algorithms are now
proposed to people detection and 3D reconstruction and 3D face identification.

In conclusion, currently the state of the art of products of video-surveillance
are not concerning people identification. Either because they are interested to the
global scene more than to single people, either because, for ethical and privacy
issues, they declare not to be able to provide identification. Conversely, biomet-
ric systems based on face recognition works normally on still images, possibly in
frontal portrait fashion and can be applied automatically in limited cases. Instead,
the research activity in computer vision aims at closing this gap and proposing new
integrated paradigms to join the capability of most responsiveness and broadband
analysis of multicamera video surveillance systems and the abilities of identifica-
tion of face recognition based biometric systems. The contact point of these two
fields are the growing approaches of head and face detection in videos.

Face detection algorithms have been proposed especially for still images. The
recent survey of Yang at al. [144] shows a very manifold panorama of techniques,
for instance based on Neural Network or statistical classifiers. Other approaches, as
the one proposed here, work on videos instead of still images by exploiting the tem-
poral redundancy of visual data. We consider known and consolidated approaches
working on a well acquired frontal views of faces. In this case, approaches based
on Eigenface [145] or on Fisherfaces [146] are promising. We replicated experi-
ments of both of them finding a possible low recall but a general high precision in
identification.

In applications of support of investigation this mean a frequent non-match, but
with very few false positive identifications. Therefore, to improve the recall more
example of the element to identify should be provided. It is possible if the source
of biometry is not a still image but a video. In this case, the technique of face
recognition must be juxtaposed to modules of people detection, people tracking,
and face detection by exploiting the new proposal in the field of computer-vision
based videosurveillance.

There is another reason to explore alternative ways to face recognition in still
images (as well as the fact that face recognition in still images is not able to distin-
guish 2D pictures of faces as in advertisement from true 3D faces of people). The
reason is that typical algorithm of face recognition can be used only with a suffi-
cient resolution or, in other words, when the face is acquired at a reasonable size.
As a proof of concept we tested one of the best assessed algorithm of face recogni-
tion, i.e. the Viola & Jones approach [147]. This method proposes the adoption of
the Haar transform to create pattern of interest and AdaBoost classifier to identify
pixel pattern that can be considered as “faces”.

Table 7.1 shows an example of results with two different webcams (C1 and C2)
taken at four different resolutions with frontal (F) and non-frontal(NF) (+/-15 ˚ )
poses. Ten versions of the sixteen situations have been replicated. Table 7.1 shows
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that in our experiments using the algorithm in OpenCV library [147], when the
face is larger than 54x54 pixels the face detection is always corrected.

TN FS ≥ 54px 48px ≤ FS ≤ 54px 40px ≤ FS ≤ 48px FS ≤ 40px
FC1 1005 N = 585 N = 100 N = 120 N = 200

R = 585 R = 100 R = 72 R = 0
R% = 100% R% = 100% R% = 60% R% = 0%

FC2 750 N = 416 N = 100 N = 134 N = 100
R = 416 R = 91 R = 57 R = 0
R% = 100% R% = 91% R% = 42.5% R% = 0%

NFC1 1032 N = 432 N = 99 N = 101 N = 400
R = 432 R = 67 R = 29 R = 0
R% = 100% R% = 67.7% R% = 28.7% R% = 0%

NFC2 727 N = 360 N = 115 N = 114 N = 138
R = 360 R = 79 R = 23 R = 0
R% = 100% R% = 68.7% R% = 20.2% R% = 0%

Table 7.1: Experimental results using OpenCV face detector on faces of different sizes. Cn:
camera n; TN: Total Number of frames of the video; FS: Face Size (the face is considered
about FSxFS pixels); Nn: number of frames of the video in range n; Rn: number of correct
detections in range n.

The correctness is acceptable with more than 48x48 pixels. For smaller sizes,
the correctness decreases. No face detection is possible for faces smaller than
40x40 pixels.

7.2 Head detection

7.2.1 Related works

Face detection is a widely explored research area in computer vision. Two recent
surveys ( [144] and [148]), collect a large number of proposal about face detection.
Most of them are based on a skin color detection [149] followed by a face candidate
validation achieved exploiting geometrical and topological constraints. Hsu et al.
[150], for example, propose a face detection algorithm for color images in presence
of varying light conditions, based on a lighting compensation technique and a non
linear color transformation. They detect skin regions over the whole image, and
then they generate face candidates imposing spatial constraints.

Unfortunately, most of the color-based approaches are very expensive from
the computational point of view and it is impossible to perform an accurate face
detection at every frame in real time video surveillance applications. To solve this
problem, the face detection can be performed only when a new person enters the
scene and then adopt a face tracker as the one proposed in Birchfield [151]. A
different approach, instead, is the one proposed by Maio and Maltoni in [152] that
works on grey scale images. In particular, face candidates are obtained through
an ellipse detection applied over the gradient. The algorithm we designed in this
work is based on the elliptical approximation of the head shape and the generalized
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Figure 7.1: The elliptical face model adopted for the head detection. The size ratio and the
orientation are fixed.

Hough transform. In particular, the method can be considered as a mixture of the
two proposals reported in [151] and [152].

The proposed approach has other important characteristics, that make it partic-
ularly suitable for video surveillance applications. As first, it is featured by a low
computational cost, which is a mandatory requirement to reach real time perfor-
mance. Secondly, the images taken from video surveillance systems usually have a
lower quality than a picture and the head sizes are smaller since the field of view is
kept large to cover a wider area. In such a situation it is impossible to identify face
features like eyes, mouth, lips, and so on. Thus, a feature based face detector is not
employable, while algorithm based on color and shape are still valid. Finally, the
proposed method is able to detect the head of the people turned back. For this rea-
son we prefer to call the implemented algorithm “head detection” instead of “face
detection”.

7.2.2 Head model

In surveillance applications the head size is too small to detect face features like
eyes, lips, and so on; thus we adopt a head model based on the color histogram and
the border shape only. As first, we exploit an elliptical head model with a fixed size
ratio empirically sets to 1.2. Furthermore, we suppose the ellipse to be vertical; in
such a manner the ellipse containing the head has three degrees of freedom that
could be expressed with the coordinates of the center (Xc, Yc) and the size W of
the horizontal axis (see Figure 7.1).

In addition to the shape, the color information is used to characterize the head.
In particular, we adopt as descriptor the color histogram H computed over the set of
points internal to the above defined ellipse. To speedup the detection phase and to
reduce the amount of memory required for each model, we employ the compressed
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space proposed in [151], which is composed by the three components (c1, c2, c3)
of Equation 7.1. 

c1 = B −G
c2 = G−R
c3 = R + G + B

(7.1)

We use 3 bits for representing c1 and c2 (chrominance components) and 2 bits
for c3 (luminance component), so that the color histograms are composed by 256
color bins. These histograms contain both face and hair colors; thus, a general and
unique model can not be obtain, but a custom histogram H̃ has to be computed and
saved for each person. Summarizing, a generic head Ξ can be represented by its
center coordinates, its size and a color histogram:

Ξ = {(Xc, Yc),W, H} . (7.2)

Whenever a person enters the scene, a head model Ξ̃ =
{

(X̃c, Ỹc), W̃ , H̃
}

is com-
puted and associated to it. In the following frames, a set {Ξi} of candidate heads
are generated and tested. The most likelihood head Ξ̂i is chosen using the color
and the gradient modules described in the following.

7.2.3 Color module

Let Ξ = (Xc, Yc,W, H) be a head candidate, defined by the coordinates (Xc, Yc)
of the center, the width W and the color histogram H. Given the correspondent
head model Ξ̃ = (X̃c, Ỹc, W̃ , H̃), we compute the color-based probability PC to
be a head using the histogram intersection:

PC

(
Ξ
∣∣∣Ξ̃) = PC

(
H
∣∣H̃) =

256∑
k=1

min
(
H(k), H̃(k)

)
256∑
k=1

H(k)
(7.3)

From the practical point of view, the histogram intersection gives us a measure
of how many colors of the head candidate are present in the reference model. In
other words, the probability value is equal to 1 if the candidate is exactly the same
of the model; instead it decreases if the candidate contains colors that do not appear
in the model.

7.2.4 Gradient module

Goal of this module is to measure how much a head candidate Ξ has an elliptical
shape. To this aim we compute the two normalized gradient maps SX , SY of the
image (along the horizontal and the vertical direction respectively) using the Sobel
masks and we generate the set E of image coordinates belonging to the ellipse
centered in (X, Y ) and having a size equal to W . Formally, we can define E using
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the following equation (where γ and δ are used to take into account the rounding
of the coordinates).

E(Ξ) =
{

(x, y)
∣∣∣( (x−Xc+γ)2

1 + (y−Yc+δ)2

1.4

)
= W 2

}
;

with γ, δ ∈ [−0.5; 0.5]
(7.4)

The gradient based probability PG is obtained considering the gradient module
in correspondence of the points of E.

PG

(
Ξ
∣∣∣Ξ̃) =

∑
p∈E(Ξ̃)

√
S2

X(p) + S2
Y (p)∣∣∣E(Ξ̃)

∣∣∣ (7.5)

where |E| =
∑
p∈E

1.

7.2.5 Head detection

Given a set {Ξi} of head candidates, we select as current detection Ξ̂ the one that
maximizes a global score Φ(Ξi) as in Equation 7.6.

Φ(Ξ) = α · PC(Ξ) + (1− α) · PG(Ξi)

Ξ̂ = argmax
i

Φ(Ξi)
(7.6)

The parameter α is used to differently weight the color and the gradient module
and should be adapted depending on the particular application or video character-
istics. In fact, if the head size is too small, the shape term could be less significant
and not so distinctive, since other almost circular objects can be present in the
scene. Similarly, the video quality could be so much degraded to avoid the efficacy
of the color module.

The set {Ξi(t)} of head candidates is obtained starting from the head extracted
on the last frame Ξ̂(t−1). For each head detected at the previous time step t−1, a
prediction based on constant velocity and constant size is computed for the current
frame t. To take into account scale and direction changes, the set {Ξi(t)} also
contains head candidates of different size and position. In particular, the position
is searched in an area whose dimension is function of the person’s velocity. The
faster the person moves, the larger the search window is. Instead, the size W (t) of
the head is searched within a fixed range around the previous size W (t− 1).

7.3 Integration with the motion detection module

To reduce the computational cost and increase the precision of the detection, we
use the foreground blobs extracted with a background subtraction module as input
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of the head detection subsystem. If the camera is still, a common background
subtraction technique can be used in order to obtain a valid foreground region as in
Fig. 7.2.

(a) Current frame (b) Extracted Foreground

Figure 7.2: Face detection over the foreground obtained with a background subtraction
algorithm

Figure 7.3: Search area obtained with the dynamic mosaicing algorithm and the detected
head

If the adopted camera is moving, instead, we can apply the mosaicing algorithm
described in Chapter 3. In this case, even if we cannot extract a reliable foreground
region, we can estimate the bounding box of the people and reduce the head search
inside these regions. In Fig. 7.3 the search area (i.e., the bounding box of the
person) defined with the tracking algorithm and the detected head are highlighted.
In Fig. 7.4 are reported some frames in which the head search windows have been
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Figure 7.4: Input frames where the corresponding search areas have been superimposed.
The size of the search area is dependent on the motion of the tracked person.

superimposed.

7.4 Hough Transform for Face Detection

To speedup the face detection previously described, we have developed a sort of
Hough Transform using the color and the gradient measures of the previous section.
For each tracked object Oj , two different Hough transforms are computed: one
gradient-based TG and one colour-based TC . The points belonging to the edges of
the track (obtained with Sobel edge detectors) vote for the first transform according
to the gradient value. The selection of the voted pixels is done by moving on
the image in the same direction of the gradient with a distance obtained from the
estimated head size (see Figure 7.5). Calling α the angle of the gradient of the
point (x, y) with respect to the horizontal axis, a and b the horizontal and the
vertical half-sizes of the ellipse respectively, we can obtain the coordinates of the
two candidate centers of the face (FC1, FC2):

∆x = a2√
a2+b2·tg2α

∆y = b2

a2 · tgα ·∆x

FC1 = (x−∆x, y −∆y) FC2 = (x + ∆x, y + ∆y)
(7.7)

Similarly, a point of the object votes for the color-based transform if its color has a
non-zero value on the histogram H . In this case, it votes for all the points inside an
ellipse having the same size of the head and the current pixel as the center, and the
rate is proportional to the model histogram value corresponding to the color of the
pixel. After that, the two transforms are normalized and multiplied pixel-by-pixel
to obtain a single map that contains both color and gradient information. The point
with the higher value is chosen as the head center of the object Oj . Fig 7.6 shows
some transform maps together with the corresponding detection results.
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Figure 7.5: Computation of the elliptical Hough transforms

7.5 Experimental Results

Figure 7.7 gives an overview of some results in indoor environment. For each
frame motion and shadow detection module are exploited for the segmentation
of the person. The HMM classifies the posture and the face detection module
selects the head (face). The best frontal view of the face is then exploited for
recognition. Table 7.5 shows some results in video with ground truth, indoor and
outdoor. Differently from results of Table 7.1, face detection is not carried out at
frame level but the head is detected initially and then tracked. In this case we obtain
two important results: the face is detected at lower resolution also (less then 40x40
pixels) and even in different poses. These results can be useful for identification
purposes in security oriented applications. For privacy issues, instead, in the case
the face is too small, the person’s identity is already protected by the low image
resolution, as it is shown in Fig. 7.8(b).

Video N frames % Recogn. Frontal
View1

Lateral
view2

Lateral
Horiz.
View3

Top
View4

Mean
Face
Size

V3 328 100% 104 107 0 117 31x39
V4 440 99% 112 162 166 0 25x31

1 2 3 4

Table 7.2: Performance of the face detection and tracking module (top) split on four dif-
ferent head postures (bottom)

7.6 Conclusion

The world of distributed video surveillance systems is still disjoint with the world
of biometry systems, for many reasons, partially technical and partially politi-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.6: Some results obtained; left column: original frames with superimposed el-
lipses representing the head; middle column: results of the motion segmentation (the areas
colored in gray are classified by the system as shadows); right column: Hough transform
values (darker color indicates an higher probability value of the head center).

cal/ethical. The work we made aimed at addressing new paradigms of integration.
We have proposed a general purpose approach to distributed video surveillance and
face detection for indoor and outdoor environments that can be refined and tailored
for many applications. Some examples are the surveillance of public places such
as airports, stations, parks, to avoid dangerous situations (e.g. to control people
in forbidden areas) or to prevent crimes (e.g. by controlling abandoned packs and
luggage); the control of autonomous robots for industrial applications to improve
safety of employers; the monitoring of indoor environments such as private houses,
working areas, and so on to assure the safety of people living and working under
the control of intelligent sensors in total respect of privacy issues.
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Figure 7.7: Results of the face detector algorithm in indoor surveillance.

(a) (b)

Figure 7.8: Examples of: face obscuration (a) and avoidable face obscuration (b)
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Chapter 8

Multicamera Systems

8.1 Introduction and Related Work

Despite of the complexity increase, multiple camera systems exhibit the undoubt
advantages of covering wide areas and enhancing the managing of occlusions (by
exploiting the different viewpoints). However, the automatic merge of the knowl-
edge extracted from single cameras is still a challenging task, especially in appli-
cation of distributed people tracking. The goal is to track multiple people moving
in an environment observed by multiple cameras tightly connected, synchronized
and with partially overlapped views.

The solution to this problem must deal with two sub-problems: the reliable
tracking in each camera system and the preservation of the identity of the people
moving from a camera’s view to the one of another camera. This second task is
often known as consistent labeling.

Approaches to consistent labeling can be generally classified into three main
categories: geometry-based, color-based, and hybrid approaches. The former ex-
ploits geometrical relations and constraints between the different views to perform
the consistent labeling process. Instead, color-based approaches base the match-
ing essentially on the color of the tracks [153, 154]. Finally, hybrid approaches
mix information about the geometry and the calibration with those provided by the
visual appearance, and they are based on probabilistic information fusion [155] or
on Bayesian Belief Networks (BBN) [156, 157].

Geometry-based approaches can be further subdivided into calibrated and un-
calibrated approaches. Among calibrated approaches, two particularly interesting
papers are [158], in which homography is exploited to solve occlusions, and [159],
that uses the epipolar lines. A very relevant example of the uncalibrated approaches
is the work of Khan and Shah [13], based on the computation of the so-called Edges
of Field of View, i.e. the lines delimiting the field of view of each camera. Through
a learning phase in which a single track moves from one view to another, an au-
tomatic procedure computes these edges that are then exploited to keep consistent
labels on the objects when they pass from one camera to the adjacent. During the
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training phase, the correspondences between points belonging to two overlapped
cameras are extracted at the camera handoff moment. This can bring to false cor-
respondences, as in the case of a person entering from the bottom of the image. In
such a situation, the head in the first camera is put in correspondence with the feet
in the other one. However, this matching is reliable enough if the goal is only the
consistent labeling at the camera handoff instant (as in [13]) and if the people have
the same height. Instead, if an exact correspondence is required, for example to
compute an homography transformation, we must verify that the matching points
belong to the same real point (e.g., the feet).

In this chapter we proposed an uncalibrated geometrical approach based on the
Edge of Field of View, similar to [13]. To solve the above mentioned drawbacks,
we introduce the concept of Entry Edge of Fields of View (E2oFoV) to assure the
consistency between the extracted lines and to compute a precise homography, used
to establish the consistent labeling.

Besides being able to correctly track people, a multicamera system should also
be very fast, since efficient reaction is a key point in video-surveillance. The consis-
tent labeling can, indeed, result to be quite slow in crowded environments, where
several cameras are present and many people are moving. For this reason, this
chapter also reports an algorithm to reduce the computational cost of the consistent
labeling establishment. In particular, a graph-based model, named camera transi-
tion graph (CTG), generalizable for a set of N overlapped cameras, is employed
to efficiently search for the best match between objects in two overlapped cameras,
similarly to the Vision graph described in [160] or the topology graph presented
in [161].

The experimental result section shows very complex situations of multiple peo-
ple crossing simultaneously the border of the FOV. The experiments have been
provided in a real setup with partially overlapped cameras monitoring an outdoor
environment (See Fig. 8.1).

8.2 Detecting Overlapping Areas

The proposed approach belongs to the class of uncalibrated geometry-based tech-
niques. Let us suppose that the system is composed of a set C = {C1, C2, ..., Cn}
of n cameras, with each camera Ci overlapped with at least another camera Cj .
Let us call 3DFOV lines Li,s the projection of the limits of the field of view (FOV)
of a camera Ci on the ground plane (z = 0), corresponding to the intersection be-
tween the ground plane and the rectangular pyramid with its vertex at the camera
optical center (the camera view frustum); s indicates the equation of the line in the
image plane. In particular, four of them, Li,sh , h = 1..4 could be computed, with
sh corresponding to the image borders x = 0, x = xmax, y = 0, and y = ymax.
They could be visible also by another camera; in such a situation we call Edge of
Field of View Li,s

j the 3DFoV line corresponding to s of the Camera Ci seen by
the camera Cj . The Li,s

j cannot be always computed, because sometimes is totally



8.2 Detecting Overlapping Areas 137

Figure 8.1: Map of our real setup.

hidden by a large object (e.g. a column). For our purposes, partial visibility is
sufficient.

The EoFoV Li,s
j divides the image on camera Cj into two half-planes, one

overlapped with camera Ci and the other one disjoint. The intersection of the
overlapped semi-planes defined by the EoFoV lines from camera Ci to camera Cj

generates the overlapping area AoFoV i
j .

The EoFoV lines are created with a training procedure; the process is iterated
for each pair (Ci, Cj) of partially overlapped cameras. To this aim, we need the
correspondences of a certain number of points on the ground plane in the two
considered views. Thus, as proposed in [13], during the training phase a single
person moves freely in the scene, with the minimum requirement to pass through
at least two points of each 3DFoV.

Therefore, even if the EoFoV is not completely visible, it can be computed if
we are able to detect a sufficient number of reliable corresponding points belong-
ing to the ground plane z = 0. In Fig. 8.1 a Map of the setup at the Modena’s
Campus is depicted where four cameras partially overlapped (one PTZ and three
fixed cameras) have been installed. In Fig. 8.2 the synchronized views of C1 and
C2 are shown.

In Fig. 8.2.a the EoFoV L1,s
2 and L2,s

1 are indicated. Let us suppose to have in
Fig. 8.2.a only the person P (e.g. the one labelled as 3). When he enters in the
FoV (camera handoff) as in Fig. 8.2.a of C1, his support point is computed and
matched with the support point of the correspondent shape K detected in C2. The
support point SP is defined as the middle point of the bottom of the bounding box
of the blob, with the assumption that the training person is walking in a standing
position. Therefore, collecting several matching pairs (SP i

P , SP j
K), the EoFoV can

be computed with a Least Square Optimization. In the example in Fig. 8.2.b the
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Figure 8.2: Camera handoff. a. Simultaneous camera handoff of two tracks; b. E2oFoV
creation; c. EoFoV creation (using Khan-Shah approach)

L2,s
1 corresponds approximately to the border of the image, being computed at the

camera handoff moment.
However, there are cases in which, at the moment of the camera handoff, the

detected parts of the person do not lie on the ground plane, as in Fig. 8.2.c, where
the head is detected. Thus, matching a head’s point in this camera with the SP in
the other camera is incorrect and causes an erroneous EoFoV computation.

To avoid this problem, we define Entry EoFoV (E2oFoV) as the EoFoV that is
computed with the matching of (SP i

P , SP j
K) extracted by the bounding boxes of

totally visible people, i.e. after the camera handoff when the blob does not “touch”
the image border anymore. This approach can bring to a displacement of the line
with respect to the actual limit of the image, but it assures the correct match of
the feet’s position in the two views. As a consequence, the actual FOV lines Eh

are neither coincident nor parallel to the image borders. In Fig. 8.2.b the E2oFoV
lines (Li,E1

j , Li,E2
j ), (Lj,E3

i , Lj,E4
i ), correspondent to (E1, E2) in Ci, (E3, E4) in

Cj respectively, are depicted. Fig. 8.2.b shows also the overlapping FoV, named
Area of FoV AoFoV , delimited with the E2oFoV and Eh lines.

8.3 Consistent Labeling with Homography

In order to propose a general approach we define the solution of consistent labeling
not only at the camera handoff but whenever it is necessary to exploit homography.

For two overlapped cameras Ci and Cj , the training procedure computes the
AoFoV i

j and AoFoV j
i areas. The four corners of each of these area define the two

sets of four points: {
P i

j = {pi,j
1 , pi,j

2 , pi,j
3 , pi,j

4 }
P j

i = {pj,i
1 , pj,i

2 , pj,i
3 , pj,i

4 }
, (8.1)
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(a) C2 at frame #1250 (b) C1 at frame #1250 (c) C1 at frame #1260

Figure 8.3: Example of simultaneous crossing of two merged objects (frame #1250, and
split after entered at frame #1260

Figure 8.4: Point sets used for computation of the ground plane homography between two
different cameras

where the subscripts indicate corresponding points in the two cameras (see Fig.
8.3). These four associations between points of the camera Ci and points of the
camera Cj on the same plane z = 0 are sufficient to compute the homography
matrix H i

j from camera Ci to camera Cj . Obviously, the matrix Hj
i can be easily

obtained with the equation Hj
i = (H i

j)
−1.

Each time a new object is detected in the camera Ci in the overlapping area (not
only at the moment of the camera handoff), its support point is projected in Cj by
means of the homographic transformation. The coordinates of the projected point
could not correspond to the support point of an actual object. For the match we
select the object in Cj whose support point is at the minimum Euclidean distance
in the 2D plane from these coordinates.

This approach is an efficient tradeoff between classical approaches that verify
correspondences at the camera handoff only as in [13], and complex methods of
3D reconstruction that find correspondences at each frame preventing any real time
implementation [159]. Instead the matching is verified whenever a new track is
detected in an image and also a 1-to-n or n-to-m match could be computed for
coping with the cases where more people passe through the EoFoV at the same
time as in Fig. 8.2.a. Moreover, as in Fig. 8.3, some people could be initially
detected as a group and thus matched with a single track. For instance, in Fig.
8.3 a group is matched to a single object (label 32). Nevertheless, whenever the
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people can be detected separately (after 10 frames) the correct consistent labeling
is recovered.

8.4 Camera Transition Graph

When a new track is detected in camera Ci the system must check whether it
is a completely new track or it is already present in other cameras. This check
can be very complex and computationally expensive if many cameras with many
tracks are present. To this aim, a graph model has been defined to exploit camera
relationships in reducing the search space of the multi-camera matching process.

In the proposed model a graph is built using information acquired during the
training phase. The graph is called Camera Transition Graph (CTG), because it in-
corporates information about camera position and it models possible tracks handoff
among overlapped views.

Figure 8.5: Example of Camera Transition Graph (CTG).

The problem can be viewed as a Constraint Satisfaction Problem (CSP). The
CTG is a symmetric graph where each node N i is the set of objects visible and
tracked in an instant in a camera Ci, and each arc αi,j = αj,i indicates the pres-
ence of a common AoFoV between Ci and Cj and needs that the constraint of
consistency must be verified if a track is visible inside the AoFoV .

In the CTG for each node N j we denote T j(t) =
{

τ j
i (t)| i = 1, . . . , kj(t)

}
the set of variable at the time t, that are the tracks detected and with xj

i (t) their
correspondent assigned labels (the instanced values for the variables).

The unary constraint at each node is that two distinct tracks must have different
labels and they must be conserved during the time. This is the typical tracking
problem from a single camera and the unary constraints must be checked at each
frame. Instead, the binary constraint of “consistent labeling” over the AoFoV is
verified only when needed.

The state of the whole system at any time can be either consistent or inconsis-
tent. We refer to a consistent state whenever the constraints are satisfied and all
the projections of the same person on multiple cameras are marked with the same
label, while different people have different labels.

If a new track is detected at time t+1, the system is switched to inconsistency,
and the system must check if it appears also in other cameras or not. Exploiting



8.5 Track warping 141

graph theory, specifically solving an arc-consistency problem on the CTG, it is
possible to correctly select only cameras and tracks generating inconsistencies and
leaving the rest of the system unchanged.

Suppose that at time t the state of the system is consistent. Suppose also that
on camera C l of the node N l, at time t+1 is detected a new track τ l

kl(t)+1
labelled

xl
kl(t)+1

(t + 1). Instead of searching for possible matches across cameras’ views,

we analyze the graph node corresponding to camera C l, N l, and we compute the
set Ψl of nodes linked to it by means of a consistency constraint arc:

Ψl =
{
N i | ∃αi,l

}
(8.2)

Let us call SP l
kl(t)+1

the support point of the new track, computed as reported

in Section 8.2. For each element N i of the set Ψl we must evaluate if the support
point SP l

kl(t)+1
lies inside the AoFoV i

l between camera C l and camera Ci on the

image plane of C l. To this aim, we used a boolean function φ defined as follows:

φ
(
N l, N i, SP

)
=
{

1 if SP ∈ Zi
l

0 otherwise
(8.3)

In the case that φ returns zero for each node N i in the set Ψl the new track is
not visible in any other overlapped camera, thus, a new label is assigned and the
system is consistent.

Otherwise, the search space Σl
kl(t)+1

for the new track τ l
kl(t)+1

is composed by
the set of tracks τ i

m such that:

(i)N i ∈ Ψl

(ii)φ
(
N l, N i, SP l

kl(t)+1

)
= 1 (8.4)

(iii)φ
(
N i, N l, SP i

m

)
= 1

In other words, for each camera Ci whose view is overlapped with C l (con-
dition (i) of equation 8.5) and in which the new track is visible (condition (ii) of
equation 8.5), the set of tracks T i(t + 1) at the time t + 1 is considered. For each
track of this set, the visibility on the camera C l is checked by means of function
φ (condition (iii)) and if it is visible, the track is considered as a candidate for
the consistent labeling. It is evident that the search space Σl

kl(t)+1
obtained with

this procedure is minimal and that results in computational saving, especially if the
matching procedure is complex and time consuming, as in the case that the track
appearance is used.

8.5 Track warping

In this section we describe how use the consistent labeling to improve the appear-
ance based tracking system; in particular, similarly to [162], we transfer appearance
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memory models among cameras applying homography transformations.
As stated above, the probabilistic tracking is able to handle occlusions and

segmentation errors in a single camera system. However, to be robust to occlusions
the strong hypothesis is made that the track has been seen for some frames without
occlusions so that the appearance model is correctly initialized. This hypothesis is
erroneous in the case the track is occluded since its creation (as in Fig. 8.6(b)).

Figure 8.6: The frame extracted from the two cameras during the camera handoff. The lines
are the intersections of the floor and the gate plane computed and drawn by the system

Figure 8.7: A scheme of the two rooms used for our tests

Our proposal is to exploit the appearance information from another camera
(where the track is not occluded) to solve this problem. If a person passes between
two monitored rooms (see for example our test bed setup reported in Fig. 8.7), it
is possible to keep the temporal information stored into its track extracted from the
first room (Fig. 8.6(a)) and use them to initialize the corresponding track in the
second room (Fig. 8.6(b)).

To this aim the following assumptions are used:

• the two cameras are calibrated with respect to the same coordinate system
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(XW , YW , ZW );

• the equation of the plane G = f(XW , YW , ZW ) containing the entrance is
given;

• it is possible to obtain the exact instant tSY NC when the person passes into
the second room. To do this, the 3D position of the support point SP of
the people inside the room could be used, or otherwise a physical external
sensor could be adopted for a more reliable trigger;

• all the track points lie on a plane P parallel to the entrance plane G and
containing the support point SP (hereinafter we call P Person’s Plane). This
assumption holds if the person passes the entrance in a posture such that the
variance of its points with respect to the direction normal to P is low enough
(e.g., standing posture).

The first three assumptions imply only an accurate installation and calibration
of cameras and sensors, while the last one is a necessary simplification to warp the
track between the two points of view. Under this condition, in fact, the 3D position
of each point belonging to the appearance image of the track can be computed and
then its projection on a different image plane is obtained.

In particular, the process mentioned above is applied only to the four corners of
the tracks and thus the homography matrix H that transforms each point between
the two views can be computed:

[x2 y2 1]T = H3×3 · [x1 y1 1]T (8.5)

Through H it is possible to re-project both the color components ¯(o) and the
alpha value α(o) of each track point from the point of view of the leaving room
to the point of view of the entering one (Fig. 8.8). The re-projected track is used
as initialization for the new view that can in such a manner solve the occlusion by
continuing to detect the correct posture.

As a test bed for our distributed system, a two-rooms setup has been created in
our lab. An optical sensor is used to trigger the passage of a person between the two
rooms. A map of the test environment is reported in Fig.8.7, while in Fig. 8.6 the
frames extracted from the two cameras in correspondence of a sensor trigger are
reported. In Fig. 8.6 the intersection lines between the floor plane and the entrance
plane are automatically drawn by the system exploiting the calibration information.
In the second room a desk that occludes the legs of a person during his/her entry
has been placed in order to test the efficacy of our approach. In this situation the
stand-alone people posture classifier fails, stating that the person is crouching (Fig.
8.9 top). Exploiting the described camera handoff module, instead, the legs of the
person are recovered by the warped appearance mask and the posture classification
produces the correct result (Fig. 8.9 bottom).
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Figure 8.8: Track warping: (1) exploiting the calibration of Camera1, (2) intersection with
entrance plane, (3) calibration of camera2, (4) intersection with Camera2 plane.

Figure 8.9: Initial occlusion resolved with track warping. a,d: input frames; b,e: output of
the posture
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8.6 Experimental Results

To test the system, we have installed four partially overlapped cameras in our de-
partment (see Fig. 8.1 for a map). The tests were carried out using the single
camera probabilistic and appearance-based tracking module described in Chapter
5.

This approach permits to maintain the appearance of the track and thus to com-
pute its Support Point also when it is partially occluded. E2oFoV and AoFoV of
the three cameras have been computed over a training video of 8000 frames. As an
evidence of the goodness of the automatically obtained homography we report in
Fig. 8.10.a the mosaic image of three frames obtained merging a frame of a camera
with the homographically distorted frames of the other two cameras. If the homog-
raphy transformation between at least one camera and the ground plane is manually
given, a sort of bird-eye view of the scene can be obtained (Fig. 8.10.b), in which
the trajectory of a person is automatically drawn. In the figure some examples of
the projections in the three views of the person are superimposed.

Figure 8.10: a. Automatically obtained mosaic image through homography; b. A bird-
eye view of the scene with a superimposed trajectory; c. visibility over the three different
cameras of the track used to generate the trajectory
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Some snapshots of the output of the system (in non-trivial conditions) after the
consistent labeling assignment are reported in Fig. 8.11.

(a) C1 at frame #783 (b) C2 at frame #783 (c) C1 at frame #1080 (d) C2 at frame #1080

Figure 8.11: Some snapshots of the output of the system after consistent labeling.

The track graphs in Fig. 8.10.c, and Fig. 8.12 report, for each person Pi, the
slot of time (in frames) in which it is visible by the three cameras (C1, C2, and C3)
of our real setup. The color of the bars corresponds to the identifier assigned by
the consistent labeling algorithm. In particular the graph in Fig. 8.10.c is related to
the same sequence used to construct the trajectory of Fig. 8.10.b.

Figure 8.12: Visibility and labels (indicated with the color of the bars) of the tracks in a
test sequence
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8.7 Conclusions

This chapter presents a method for establishing consistent labeling in a multi-
camera system. Its main contributions can be summarized as follows:

1) the computation of reliable E2oFoV lines to obtain without calibration the
correct area of overlap AoFoV

2) the computation of the homography matrices between two overlapped views
by using the EoFoV lines;

3) the exploitation of the homographic transformation to establish consistent
labeling in the whole overlapping area, in order to recover the correct labels
in the case of objects that enter as merged and then split.

4) the automatic generation of a Camera Transition Graph that models the
topology of the network of cameras reporting the field of view overlaps;
this graph is used to reduce the search space during the consistent labeling
phase.

The reported experiments demonstrate the accuracy of the proposed method, also
in situations with many people overlapped and only partially visible.



148 Multicamera Systems



Chapter 9

Geospatial Trajectory Estimation
of a Moving Camera

9.1 Introduction

In the first part we have seen how recover the motion and thus the trajectory of a
moving object by means of motion detection techniques. The video stream contains
the object to be tracked and, knowing the camera position, it is possible to estimate
the object trajectory.

In this chapter, instead, we suppose that the analyzed video has been captured
by a moving camera, e.g. a hand held camera. A set of reference images from
the same scene is available, together with information about the position where
the images are taken from. Our aim is to recover the trajectory of the camera
comparing the frames with the reference images.

The proposed methods have two main steps. First, scale invariant features
(SIFT) are detected and matched between the reference images and the video
frames, to calculate a weighted adjacency matrix (WAM) based on the number
of SIFT matches. Second, using the estimated WAM the maximum matching ref-
erence image is selected for the current video frame, which is then used to estimate
the relative position (rotation and translation) of the video frame using either the
fundamental matrix or temporal fundamental matrix. The relative position is recov-
ered up to a scale factor and the scale ambiguity is resolved using a triangulation
between the video frame and two reference images. Results of recovering camera
trajectory are reported for four real sequences, as well as on images from the ICCV
Computer Vision 2005 contest dataset.

This work has been carried out at the CVLab - University of Central Florida -
Orlando, under the valuable supervision of Prof. Mubarak Shah.
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9.2 Description of the system

Geospatial trajectory estimation involves finding the GPS location of the captured
video, using certain geometric constraints. GPS was first introduced by the US
Department of Defence about 15 years ago for military personal and vehicle track-
ing around the world. Since then the GPS technology has been widely used in the
areas of autonomous navigation and localization of vehicles and robots. It has been
used by the military for terrain analysis and mapping, and targeting enemy vehi-
cles and installations. Recently, commercial applications have employed GPS data
with geo-referenced maps to recover the map of a city address or to provide direc-
tions between different city locations. In this paper we address two problems of
localizing the geospatial position and estimating the trajectory of a moving camera
based on the captured sequence of images. Geospatial position is localized using
maximum SIFT matches between reference images (with known GPS) and video
frames while camera trajectory is estimated using the geometric constraints (ei-
ther spatial or spatio-temporal) between maximum matching reference images and
video frames.

We start with the problem of finding the location of images with unknown GPS
using images with known GPS location. We consider realistic scenarios where the
method does not require 3D reconstruction and matching of the environment for
localization. We recover the unknown GPS location of images using geometric
constraints with the images with known GPS location and applying triangulation
using two maximum matching reference images (see details in Section II). We then
move on to the video domain where we recover the video trajectory using geomet-
ric constraints with images with known GPS location. In order to obtain smooth
trajectory we apply b-spline smoothing using reliably localized GPS locations as
control points (see details in Section III). We further extend this method by using
intersection of triangulated vectors using all the matching reference images to re-
cover the unknown GPS location of the video frames (see details in Section IV).
Finally, we utilize spatio-temporal geometric constraints (instead of just spatial
geometric constraints used above) using temporal fundamental matrix to recover
the trajectory of the moving camera. This method does not require any trajectory
smoothing as it inherently uses the neighboring video frames in the estimation pro-
cess (see details in Section V). We now describe the related work in the next section
and follow up with the details of the three proposed methods briefed above.

9.3 Related works

In literature, a variety of methods have been proposed for motion recovery and
measurement of robot trajectory (odometry) using visual inputs. Visual odome-
try is a method that uses image sequences to obtain 6 degrees of freedom (dof)
camera motion and dense 3D environment information. Structure from Motion
(SFM) is the most common approach to solve problems such as automatic en-
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vironment reconstruction, autonomous robot navigation and self-localization. In
these approaches, a 3D reconstruction of the environment is performed during a
learning phase or directly using the test video. Thus the actual camera position is
obtained by 3D matching of the current view with the learned environment map.
Methods that use such technique for recovering geospatial location include batched
sequence of images [163–168], trifocal tensors [169], bundle adjustment and non-
linear minimization [170, 171], supervised robot navigation [172, 173], panoramic
images [174,175], stereo vision [176–178], and map correlation using visual odom-
etry [179]. The most recent work using this approach was proposed by Royer et
al. [180] for mobile robot navigation. The robot is first manually guided on a learn-
ing path. Then a map of the environment and its 3D reconstruction is performed
off-line. Using this 3D reconstruction the robot is able to recover its pose with
respect to the 3D environment model.

An approach for Simultaneous Localization And Mapping (SLAM) was ini-
tially proposed using active vision in [181–183]. Recently approaches for SLAM
were proposed in [184–188], which are based on the probabilistic models of un-
certainty. They assume a robot moving in a world with stationary landmarks (dis-
tinctive physical features) that can be observed by some sensor. The positions of
the landmarks along with the robots position at a particular time are considered to
be the system state. The problem consists of estimating the new state (robot and
landmark positions) at the next time instance, given the last movement made by
the robot and new observations provided by the sensory subsystem. The typical
sensors used for measuring the distance and orientation of landmarks with respect
to the robot are sonar rings [189–192], vision [193], and more frequently the laser
scanners [186,194]. Davison proposed two methods that do not require specialized
hardware (laser scanners or sonar rings) for measuring distance and orientation of
landmarks. His solutions are based on an active binocular head [195] and a sin-
gle camera [196] that estimate the distance and orientation of visual landmarks. A
disadvantage of these solutions is the need for an initial manual calibration: both
for the position and orientation of the robot with respect to a predefined target of
known size.

SFM and SLAM based approaches have two major disadvantages. Firstly, the
task is computationally very expensive and is unnecessary to just recover the trajec-
tory of the camera. Secondly, the 3D reconstruction of the environment may fail in
certain instances where distinctive features cannot be computed e.g. images with
trees only or areas with sparse buildings. Since these methods rely on 3D envi-
ronment reconstruction and use a matching algorithm for pose recovery, therefore
these methods may not fully recover the complete video trajectory.

For real time applications a different approach to visual odometry is followed.
Commonly, a stereo rig is exploited to obtain the 3D coordinates of some feature
points, and not the complete image (as in SFM). Using the corresponding feature
points from the next frame, the relative camera motion is recovered. Iterating this
procedure, the trajectory of the camera is recovered. This approach was originally
developed by Matthies et al. [197] and was further refined by [178, 198, 199]. Nis-
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ter et al. [178] estimate the camera motion using a geometric hypothesize-and-test
architecture. Using the same approach, Cheng et al. [198] equipped NASAs Mars
exploration Rover with a visual odometry system. Ozawa et al. [199] tested their
system using a humanoid robot named H7, which is constructed for footstep plan-
ning on a 3D map, reconstructed by visual odometry. The system consists of two
key components: 3D reconstruction via visual odometry from a stereo image se-
quence to obtain a dense local world model, and a footstep planner for biped robots,
using the reconstructed 3D map.

A common problem of the real time methods is the requirement of geospa-
tial alignment of the recovered trajectories. When applied to robot navigation, the
six degrees of freedom can be reduced to only three [200], since robots normally
navigate on a planar (or locally planar) ground. Another disadvantage is the re-
quirement of a stereo rig for recovery of 3D feature points. What is novel in our
approach is that we do not require a 3D reconstruction of the environment (or
feature points) for recovering the camera trajectory. Rather we require a set of ref-
erence images with known GPS locations for geospatial localization of the novel
video data. Also, we use sub-sampled video frames for localization of the camera
trajectory. Thus our method has two advantages over existing methods. First, our
method does not require all video frames to have distinctive features for geospatial
localization. Second, our method is computationally less expensive since we do
not require 3D reconstruction and matching of the environment for localization.
We now describe our image localization scheme in detail in the next section.

Figure 9.1: Overall geospatial image localization scheme.

9.4 Image Localization

Our first goal is to compute the geospatial localization of the novel images {Vt, t =
1..M}, given a set of reference images {Ip, p = 1..N} with known GPS location.
The assumptions made in this work are that some images have overlapping field of
view with the reference images. Also, the camera does not zoom while capturing
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the reference images and novel images i.e. constant intrinsic parameters. These
assumptions allow the auto-calibration of the capturing devices.

The overall geospatial image localization scheme is given in Fig. 9.1. Given a
set of reference images we recover the camera intrinsic parameters using a method
proposed by Luong and Faugeras [201]. Similarly, we recover the novel cameras
intrinsic parameters using the novel images. Next, SIFT [202] features are detected
and matched between the reference images and the novel images. Using the max-
imum matching reference images and novel images, we estimate the fundamental
and essential matrices between reference image Ip and novel image Vt pairs to re-
cover the camera pose. Finally, we apply triangulation to recover scale ambiguity
in the estimated camera pose and obtain the geospatial localization of the novel
image. We repeat these steps for all novel images to recover their GPS locations.
The following sections detail these steps.

9.4.1 Estimating the Weighted Adjacency Matrix

In order to obtain geospatial localization using the fundamental matrix constraint,
we require feature point correspondence between reference images Ip and novel
images Vt. There are several methods to obtain point correspondence between
images including Harris corner detector [203], Scale and affine invariant point de-
tector [204], and Scale Invariant Feature Transform (SIFT) [202]. We empirically
evaluated all three point correspondence methods and found SIFT to be the most
robust matching method across a substantial range of affine distortion, change in
viewpoint, addition of noise, and change in illumination. The SIFT features are
highly distinctive, and each feature point is represented by a 128 dimensional fea-
ture vector.

A match is found for a feature in novel image Vt to a feature in Ip by estimating
the ratio of the smallest to second smallest Euclidean distance between the feature
vectors. In [202], the authors reject all matches which have a distance ratio greater
than 0.8, which eliminates 90% of the false matches while discarding less than 5%
of the correct matches. In our application, we set this threshold to 0.4, in order
to have less number of very reliable matches. The above matching scheme may
result in multiple feature points in novel image Vt matching with the same feature
in image Ip. We obtain a one-to-one correspondence by maximum matching of a
bipartite graph. The bipartite graph construction is obtained by treating the two
feature point sets as nodes in bi-partitions (Ip and Vt) and the distance ratio as
the weight on the edges between the bipartition. We obtain a weighted adjacency
matrix W (Ip, Vt) by finding the point correspondence between all pairs of Ip and
Vt. Each entry in the matrix corresponds to the number of matching features be-
tween Ip and Vt. The corresponding set of matching point locations is stored in a
matching matrix M(Ip, Vt) such that:

M(Ip, Vt) = {(x1, y1, x2, y2); (x1, y1) ∈ Ip ∧ (x2, y2) ∈ Vt} (9.1)
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9.4.2 Pose Recovery of the Novel Images

Given a novel image Vt, we want to recover the position PVt = {Xt, Yt, Zt} of
its camera optical center with respect to a reference image Ip in the world coordi-
nate system. Firstly, we test if the novel image is located at the same location as
the reference image by applying a homography test. If it fits a homography with
a reference image, then we assign the novel image the same GPS location as the
reference image. Otherwise, we proceed using geometric constraints to recover the
GPS location of the novel image. Since the GPS location of the reference images Ip

are given in terms of longitude and latitude, we apply spherical to cartesian conver-
sion to obtain PIp = {Xp, Yp, Zp}. We then find the maximum matching reference
image Ip using W (Ip, Vt). Furthermore, we utilize the set of corresponding points
M(Ip, Vt) to estimate the fundamental matrix F p

t between images Vt and Ip using
the constraint:

[x1 y1 1] · F p
t · [x2 y2 1]T = 0; ∀(x1, y1, x2, y2) ∈M(Ip, Vt) (9.2)

Due to noise in feature point location and incorrect point correspondence, the
estimation of the fundamental matrix using the above linear constraint is erroneous.
In order to obtain a robust estimate, we use RANSAC based fundamental estima-
tion technique proposed by Torr et al. in [205]. Using the fundamental matrix and
calibration matrices Kt and Kp (obtained using auto-calibration [206] of Vt and Ip

respectively) we can estimate the essential matrix Ep
t by:

Ep
t = Kt · F p

t ·Kp. (9.3)

The rotation R and translation t between Vt and Ip can be recovered from the
essential matrix by using methods proposed in [206]. The translation vector t thus
obtained is recovered up to a scale factor and this ambiguity is resolved using
triangulation described next.

9.4.3 Resolving Scale Ambiguity

The triangulation scheme is employed to recover the scale ambiguity and thus ob-
taining PVt = {Xt, Yt, Zt}, i.e. the position of camera center for the novel image
Vt. The triangulation method requires an image triplet (two reference images Ii, Ij

and a novel image Vk) and the construction is depicted in Fig. 9.2. Thus, for each
novel image Vt, two reference images are selected from the entire set, such that,
the obtained triple has the maximum matching feature points with the novel image.
The two reference images should also have different GPS locations otherwise the
resulting triangulation construction is degenerate. More formally, given a novel
image Vk, the best triplet BT (Vk) is obtained using:

BT (Vk) = (Vk, Ii, Ij);
suchthat

(i, j) = argmax
i,j=1..N

(
min

(
W(Vk, Ii), W(Vk, Ij), W(Vk, Ii)

)) (9.4)
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Figure 9.2: Triangulation between two reference images and novel image used to resolve
scale ambiguity for GPS location estimation.

Figure 9.3: Example of best triplet selection and matching for novel image of Engineering
building dataset. The two reference images are in top row while the novel image is in the
bottom row.

Fig. 9.3 shows an example of best triplet selection for a novel image in the
engineering building dataset. Given the rotations and translations between each
pair of camera coordinate system (Rj

i , t
j
i ), (Rk

i , t
k
i ), and (Rk

j , tkj ), we can compute
the three internal angles (for the triangle) using:

θ1 = cos−1 dot(t1,t2)
norm(t1)norm(t2)

θ2 = cos−1 dot(−t1,R1t3)
norm(t1)norm(t3)

θ3 = 180− θ1 − θ2

(9.5)

where norm(x) is the magnitude of x. The scale factor is recovered through dis-
tance D(Ii, Ij) obtained from the two GPS locations of the reference images. The
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location of camera center for novel image Vk is obtained using trigonometric iden-
tities (using sine law of triangles). The recovered camera center is converted from
Cartesian to spherical coordinates to obtain GPS location in latitude and longitude.
This process is repeated till all the GPS location for novel images are estimated.
We now describe the extension of this method to video frames for recovering the
trajectory of a moving camera.

9.5 Video Localization

Our second goal is to extend the geospatial localization scheme to videos. Thus,
given the video frames {Vt, t = 1..M} and a set of reference images {Ip, p =
1..N} with known GPS location, we want to recover the trajectory of the moving
video camera. The assumptions made in this work are that some video frames have
overlapping field of view with the reference images. Also, the camera does not
zoom while capturing the reference images and video frames i.e. constant intrinsic
parameters. These assumptions allow the auto-calibration of the capturing devices.

Figure 9.4: Overall geospatial video localization scheme.

The overall geospatial image localization scheme is given in Fig 9.4. Given a
set of reference images we recover the camera intrinsic parameters using a method
proposed by Luong and Faugeras [201]. Similarly, we recover the video cam-
eras intrinsic parameters using the video frames. Next, we perform homography
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tests between the sequence of video frames to select key-frames from the video.
This step reduces the computation time since the key-frames are those frames in
the video that have significant camera translation between each other. Further-
more, SIFT features are detected and matched between the reference images and
the video key-frames. Using the maximum matching reference images and video
frames, we estimate the fundamental and essential matrices between image Ip and
frame Vt pairs to recover the camera pose. Finally, we apply triangulation to re-
cover scale ambiguity in the estimated camera pose and obtain the geospatial lo-
calization of the video key-frame. We repeat these steps for all video key-frames to
recover the complete camera trajectory. The following sections detail these steps.

9.5.1 Localization of the Video Frames

Given a video frame Vt, we recover the position PVt = {Xt, Yt, Zt} of its camera
optical center with respect to a reference image Ip in the world coordinate system
using the similar scheme as described in the previous sections.

9.5.2 Trajectory Smoothing

The fundamental matrix estimates are highly sensitive to noise in feature corre-
spondence. Thus, numerical errors, insufficient feature point correspondence and
noise could result in incorrect estimation of GPS locations for the video frames.
Performing multiple estimations of the fundamental matrix (using RANSAC), we
obtain a spatial distribution of GPS locations for each video frame. If the point
correspondence is reliable, the variance in the spatial distribution of GPS location
will be minimal. Therefore, we discard GPS estimates of the video frames with
high variance and reduce GPS estimation error for the video trajectory. Finally, we
use the remaining GPS locations as control points on a b-spline and interpolate the
rest of the trajectory by curve fitting.

9.6 Results and Discussion

Sequence Frames Keyframes Precision
Public Affairs 405 42 6.54 meters
Engineering II 325 33 7.55 meters
Theater 645 61 6.37 meters
Health Center 1187 82 9.52 meters

Table 9.1: Mean localization error for different videos

The accuracy of our geospatial localization was tested against the ground truth
GPS information obtained using a Garmin GPSMAP 76S unit that has an accuracy
of 3 meters. We captured over 300 reference images (some examples shown in Fig.
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Figure 9.5: Examples of reference images with known GPS locations used in our experi-
ments.

9.5) using a Nikon D2X camera at 4 MP (mega pixels per image) in various loca-
tions on our campus. The video sequences were captured using a Sony HDR FX1
camera at HD quality. We empirically evaluated our method to recover geospatial
trajectory of a moving camera on four sequences totaling over 2500 video frames.
The summary of results for the four sequences is given in Table 9.6.

Fig. 9.6 shows a video trajectory obtained and a comparison with the ground
truth for the theater sequence. The average localization estimation error for this
sequence is 2.77 meters with a standard deviation of 1.83 meters.

Fig. 9.7 shows a video trajectory obtained and a comparison with the ground
truth for the health center sequence. The average localization estimation error for
this sequence is 4.38 meters with a standard deviation of 3.91 meters. The reason
for higher localization estimation error is due to the presence of trees and non-
distinctive features (grass) during the middle of the sequence. Though the average
estimation error for our method is about 4 meters, this sequence cannot be used for
SFM based methods that rely on distinctive features throughout the sequence so
that a 3D reconstruction and matching can be used for pose recovery and localiza-
tion. This is the major advantage of our method and is more generally applicable to
real sequences for geospatial localization. An empirical comparison of estimation
errors for each key-frame (for the theater sequence) is also provided in Fig. 9.8.

Dataset Knowns Unknowns Avg. Score Avg. Est. Error
Test4 9 20 4.2 3.05 meters
Final5 16 22 3.5 6.08 meters

Table 9.2: Mean localization error for ICCV contest dataset

In order to test the robustness of our GPS estimation method, we also con-
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Figure 9.6: Video frames for the theater sequence. Bottom: Video trajectory (green) ob-
tained using the temporal fundamental matrix based localization method is compared with
ground truth trajectory (red). The trajectory obtained through the fundamental matrix lo-
calization is shown in blue (yellow line shows non-smooth trajectory). The location of the
reference images used in localization are shown as purple dots.
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Figure 9.7: Video frames for the health sequence. Bottom: Video trajectory (green) ob-
tained using the temporal fundamental matrix based localization method is compared with
ground truth trajectory (red). The trajectory obtained through the fundamental matrix lo-
calization is shown in blue (yellow line shows non-smooth trajectory). The location of the
reference images used in localization are shown as purple dots.

Figure 9.8: Localization error for 40 runs of the Theater sequence; mean estimation error
for each keyframe with standard deviation shown as top/bottom bars.
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Figure 9.9: Images with unknown GPS location for Test4. Bottom: GPS locations (blue)
obtained using our method is compared with ground truth GPS (red). The error in esti-
mates are shown as yellow lines between the ground truth and estimated locations.

Figure 9.10: Images with unknown GPS location for Final5. Bottom: GPS locations (blue)
obtained using our method is compared with ground truth GPS (red). The error in esti-
mates are shown as yellow lines between the ground truth and estimated locations.
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ducted experiments on the golden datasets (test4 and final5) of the ICCV Contest
2005. We estimate the GPS locations for each image with unknown GPS location
using the best triplet and triangulation method by applying the fundamental matrix
constraint (since video data is unavailable). The summary of results of our method
is provided in Table 9.6. Also, a visual comparison of our results with the ground
truth is given in Figures 9.9 and 9.9 for test4 and final5 respectively. As can be
seen from the results, this method has an average estimation error of 3.05 meters
and 6.08 meters for datasets test4 and final5 respectively. While the average score
for test4 and final5 using the histogram of error method used in the ICCV Con-
test is 4.2 and 3.5 respectively. The best scores in the contest for these datasets
were 5.0 and 3.5 respectively. This shows that our localization scheme with reg-
ular fundamental matrix performs well for estimating GPS locations for standard
datasets.

9.7 Conclusions

This chapter proposed novel methods for estimating the geospatial trajectory of
a moving camera. We used the video data and a set of reference images, cap-
tured from known GPS location, to recover the trajectory of the moving camera.
What is novel in our approach is that we do not require a 3D reconstruction of the
environment for recovering the camera trajectory. Rather we require a set of ref-
erence images with known GPS locations for geospatial localization of the novel
video data. Also, we use sub-sampled video frames for localization and obtain a
smooth camera trajectory. Our method has two advantages over existing methods.
First, our method does not require all the video frames to have distinctive features
for geospatial localization. Second, our method is computationally less expensive
since we do not require 3D reconstruction and matching of the environment for
localization. Results were presented on four real video sequences for geospatial
localization using the proposed three methods, as well as, on the ICCV contest
dataset.
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Sensor Integration

10.1 Introduction

Despite the efforts made by the researchers in developing a robust multi-camera
vision system, computer vision algorithms have proved their limits to work in com-
plex and cluttered environments [207]. These limits are mainly due to two classes
of problems. The first is that “non-visible areas can not be processed by the sys-
tem”. This trivial statement is of particular importance in cluttered scenes and can
be partially lessened by using multiple sensors (not only cameras). The second
class of problems, instead, is due to the limited resolution of cameras. Having infi-
nite resolution and zooming capabilities would make the job easier, but, in addition
to be unfeasible, it would exponentially increase the computational load and it is
typically too expensive.

An interesting solution is that of using simple but effective specialized sensors
to solve the specific problems of the vision systems. In this way, vision would
still provide high-level information, and low-level sensors would assure higher ac-
curacy. In this context, the marriage between a widely distributed low-cost wire-
less sensor network and the coarsely distributed higher level of intelligence that
can be exploited by computer vision systems may overcome many troubles in a
complete tracking of large areas. For our application, we exploit passive Pyro-
electric Infrared (PIR) sensors which are widely deployed in low-cost surveillance
systems (e.g., for car or home alarm systems). PIR sensors are used in traditional
surveillance systems to trigger video cameras [208]. A trigger just conveys a binary
(yes/no) presence information, but limited signal processing effort on the output of
a PIR sensor can produce much more information (e.g., target speed and direction
of movement). Furthermore, integration of data from multiple networked PIR sen-
sors can provide drastically improved spatial resolution in monitoring and tracking.
Low-cost and low-power sensor nodes can now be developed with on-board pro-
cessing capabilities, reconfigurability and wireless connectivity [209, 210].

This chapter reports our research in developing a multi-modal sensor network
that integrates a wireless network of PIR-based sensors with a traditional vision
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system to provide drastically improved (in accuracy and robustness) tracking of
people.

10.2 Related works

The emerging technology of multisensor data fusion has a wide range of applica-
tions, both in public and in private areas. Among them, surveillance and security
have gained much interest in recent years, also due to the terroristic threats. Such
applications often rely on cameras, due to the large amount of information and
the high-level knowledge they provide. However, video surveillance in wide area
through computer vision techniques is still a challenging problem largely faced in
the last years [211].

Since cameras still have limitations due to the limited field of view or reso-
lution, the proposal of this work is to combine data coming from cameras with
information provided by a wireless sensor network based on PIR sensors, in order
to improve the robustness of the system. PIR sensors are mainly known for their
use in video surveillance systems, manufactured by a number of companies (e.g
in [208, 212]), to detect motion and provide a trigger to cameras. For their insen-
sitivity to light conditions, in [213] PIR sensors are used to provide a trigger event
in a motion-detection application mainly based on cameras for tracking events at
night, together with a floodlight. The appearance of an infrared radiating body
set off the PIR sensor, which turns on the floodlight enabling the cameras to cap-
ture clearly an event such as animals passing by an outdoor detected area. Being
low-cost, low-power and small form-factor devices, PIR sensors are suitable for
wireless sensor networks, where energy consumption, unobtrusiveness and easy
placement in the environment are critical requirements. In [214], a wireless PIR
sensor network is used to detect objects and humans for security applications and
provide an estimation of the direction of movements. The network is implemented
using Mica2 [210] nodes and data gathered by a base station. Tracking algorithms
are implemented on the nodes and speed calculation provided accurately, even if
influenced by the orientation of the sensors. Sensor networks implemented with
PIR devices are useful where privacy must be preserved together with security.
In [215] cameras and PIR sensors are deployed respectively in public and private
areas, and their information combined to correlate events such as tracking human
motion and undesired access or presence in private areas, such as theft. This work
demonstrate benefits of reducing camera deployment in favor of PIR sensors and
reports results from a survey on 60 people, stating that people consider motion
sensors less invasive for their privacy than cameras.

PIR sensors are often combined with vision systems and other kind of sensors
in research focused on robot navigation and localization. In [216] a sound source
localizer and a motion detector system are implemented on a human service robot
called ISAC, with the purpose of redirect the attention of ISAC. The motion de-
tector system use an infrared sensor array of five PIR sensors and it is integrated
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with the vision system of ISAC to perform real-time human tracking, in a most
inexpensive way. Similar use of PIR sensor can be found in [217], where data
from multiple PIR sensors, two color cameras and a pair of microwave sensors are
collected, processed and fused to track human presence in the vicinity of a robot.
A main motivation to use PIR sensors in pair with cameras is their insensitivity to
lighting conditions, to avoid robot collision with humans for their safety in many
different conditions.

10.3 Integrated Multi-Modal Sensor Network

Figure 10.1: Map of our test bed system

Figure 10.2: Software architecture of the system

Vision systems achieve good accuracy when working alone, but they definitely
could benefit from the multi-modal integration with PIR sensors. For testing the
integration, a test bed has been created at our campus. Fig. 10.1 shows the location
of cameras and PIR sensors. The system we implemented is composed by several
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modules, working in parallel on different threads (see Fig. 10.2). In particular,
a thread is generated for each camera, devoted to compute the list set of people
present in the scene exploiting a two stage processing (segmentation and tracking).
All the camera threads are tightly connected to a coordinator thread, that detects
if the same person is visible in more than one camera, and, in such a situation, it
labels the corresponding tracks with the same identifier.

At the same time, a sensor manager coordinates the network of sensors dis-
tributed over the monitored area. As explained in detail in Sec. 10.4, PIR sensors
are able to detect the presence of moving objects or people within their coverage
area. Observing the output of a couple of PIR sensors, the microcontroller inte-
grated on the sensor node is able to detect both presence and direction of move-
ment. When such a situation is detected the microcontroller creates and wirelessly
sends a message to a special node which acts as a sink. The sink then forwards the
message to the sensor manager via RS232 cable in order to make the information
available to the tracking and labeling algorithms.

Eventually, data coming from cameras and sensors are collected and managed
by a supervisor thread. The coordination between cameras and sensors is twofold.
Each time the vision system requires more detailed or reliable information about
the presence of people in the zones monitored by the sensors, it sends requests to
the supervisor thread. Contemporaneously, whenever the sensor network detects a
particular event, the manager takes care to inform the involved cameras. Detailed
descriptions of the PIR sensor network, of the vision system, and of two examples
of integration are reported in the following sections.

10.4 PIR sensor network

10.4.1 Sensor node architecture

Sensor nodes are more complex devices than simple sensors. A microcontroller, a
transceiver and a power supply (mainly a battery) together with a variety of sensors
form an entity capable of collecting events and information from the surrounding
area, analysing them and sending message or data to other nodes or to the users
(see Fig. 10.3).

Microprocessor and Transceiver. The hardware used to collect, process and
send data from a PIR sensor is the SARDTMBoard provided by FreescaleTMto de-
velop wireless applications over the worldwide free 2.4 GHz ISM band. This de-
velopment board includes a microcontroller of the HCS08 family (MG9S08GT60),
an MC13192 2.4GHz transceiver, a set of I/O pins and a RS232 port to interface the
CPU with the external world and several leds and buttons. This development board
is very flexible and many types of sensors can be connected to it. Furthermore,
the microcontroller has the ability to operate in low power mode to save energy
and to be waken up by external interrupts generated by the sensor output condi-
tioning circuits. The transceiver is designed to be low-power, short range and fully
compatible with the IEEE 802.15.4 standard. It communicates with the microcon-
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Figure 10.3: Sensor node architecture

troller via a four-wire SPI interface and an interrupt request output. The transceiver
supports 250 kbps O-QPSK data in 16 5.0MHz channels and full spread-spectrum
encode and decode. It enables communication with other devices up to distances
of 40m outdoor.

Sensing element. The sensing element used in our application is a passive
Pyroelectric InfraRed (PIR) sensor. Such devices are able to transduce incident
infrared radiation into current. Commercial PIR sensors are sold in pairs with op-
posite polarization. Such a configuration makes the sensor able to detect variations
of incident infrared radiation irradiated by bodies moving inside his coverage area
which are not at thermal equilibrium with the environment. PIR sensors are used
with Fresnel lens to enlarge and shape their area of sensitivity. They are passive
sensors with minimal power consumption, ideal for battery powered systems. The
PIR sensors used in this work exhibit high sensitivity and reliable performance,
high stability to thermal change and high immunity to external noise. By suitably
shading its Fresnel lenses we were able to obtain cone of coverage with a vertical
angle of 60 degrees and an horizontal angle of 38 degrees.

Furthermore, a single PIR sensor can detect the direction of movement. Fig.
10.4 shows the signal detected by sensor when a person passes through the area
under control from left to right (the first peak is negative) and from right to left
(first peak is positive).

In our setup, the typical node includes two PIR sensors to enhance the infor-
mation captured as explained in the following paragraph.

Power Supply. The system can be powered directly by main power or alterna-
tively with a commercial battery at 9V. Internally, the voltage is stabilised at 3.3V.
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Figure 10.4: Signals detected by sensor: when a person passes through the area under
control from left to right the first peak is negative and from right to left the first peak is
positive

10.4.2 Sensing and Acquisition Software

Fig. 10.5 shows the processing data flow from event acquisition to generation of
the packet which will be sent by the wireless node. This section describes the role
of the different parts.

We are interested in precisely detecting presence and direction of movement,
also in complex situations such as changes in direction within the covered area. In
fact, these are information that can be exploited by the vision system for enhancing
the accuracy of the video surveillance application, in which presence and direction
of movement (of people) are key information.

As outlined above, we augment the information produced by a single node by
using two PIR sensors (Fig. 10.6(a)) per node. The typical sensors’ output when
a person is walking through the sensor area is the one presented in Fig. 10.6(b).
The signal collected by the sensors is digitally converted to be processed by the
microcontroller. When a person crosses the monitored area each of the two sensors
generates a waveform similar to the one in Fig. 10.4 depending on the direction of
movement. We consider interesting events those stimulating a significant variation
of the signal (Fig. 10.6(b)): when the input coming from the digital converter
exceeds a lower or an upper threshold, a trigger is generated to start the processing
algorithm in charge of extracting information from the signal. The analysis, as
mentioned above, is aimed at understanding the direction of a person walking in
the covered area. Assuming that one person is moving from left to right as in
Fig. 10.6(a), he will be detected first by PIRi then by both PIRi and PIRj

and at last only by PIRj as it is explained in Fig. 10.7. In general, a different
activation sequence can help identifying changes in direction of movement within
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Figure 10.5: Event acquisition and Sensor Data Conditioning and Processing

the area covered by the array of sensors. Result from the processing is a message
containing information about the presence and/or direction of movements in the
selected area. The format of the packet is described in the following section.

(a) (b)

Figure 10.6: Sensor node composed by two PIR sensors

Note that the trigger generator is disabled for a period to be set depending on
the application after the detection of an event, avoiding redundant information to
be sent. In our case, the period is set to 2 seconds. This choice has been verified as
not preventing a correct analysis, because it does not cause loss of events.
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Figure 10.7: Activation sequence.

10.4.3 Network Architecture

Communication Protocol. Communication among nodes is based on IEEE 802.15.4
protocol for wireless networks. This protocol has been designed for applications
with limited power budget and relaxed throughput requirements. Its main objec-
tives are ease of installation, reliable data transfer, short range operation, extremely
low cost and a reasonable battery life, while maintaining a simple and flexible pro-
tocol. This protocol defines two types of devices: full function device (FFD) and
reduced function device (RFD). It also defines three possible roles for the nodes of
the network: coordinator (which is unique for a network), router and end device.
A coordinator and a router must be FFD while an end device may be either FFD
or RFD. Usually routers and coordinators are main powered while end devices are
located on the field and are battery powered. Two or more devices constitute a
wireless personal area network (WPAN). However, one device must be a coordina-
tor.

Network topology and organization. The network has a star topology, i.e., all
the nodes are end devices and communicate only with a central one, the coordina-
tor. The central node (bridge) collects data from the sensor nodes and sends them
to another node (sink) which communicate to a PC through its RS232 interface
(see Fig. 10.1). Hence, in our application the bridge is the network coordinator
while the other nodes are end devices. The sensor nodes, which are located in the
courtyard, are battery-powered while the bridge and the sink are main-powered.
This topology is suitable to the characteristics of the monitored area. In fact, the
sensors are located in a courtyard outside the building while the PC, due to privacy
issues, is locked inside a small room, which must be kept closed within the build-
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Information Code Values Code
Presence 1 Present 1

Area free 16
Direction 2 From PIRi to PIRj 48

From PIRj to PIRi 192

Table 10.1: Examples of adopted codes

ing. Some tests shown that only the sensors close to the door of the building are
able to communicate with a device inside the room, while all the courtyard can be
covered by a receiver located close to the door.

Message format and set of commands. As already mentioned, the information
collected by the sensors are sent to the video processing server via RS232 cable.
We decided to use an asynchronous communication, that is, the sensor network
send data to the server as soon as it collects them. The structure of the messages is
shown in Fig. 10.8.

Figure 10.8: Communication protocol between nodes and sensor manager

Each message is made up of a start byte (the ASCII code ‘I’), a sensor ID,
an area ID, an indication of length (the number of following couples name-value),
several couples name-value and a stop bit (the ASCII code ‘F’). Start and stop
bits are used for synchronization. Area and sensor node IDs are used to uniquely
identify the node. The couple name-value encodes the information provided by the
sensor. Some examples are reported in Table 10.1.

10.5 Examples of Multi-modal Integration

As stated above, the vision system achieves good accuracy when working alone,
but it definitely could benefit from the multi-modal integration with PIR sensors.
This section will report some results. To test the system we have equipped the
atrium of our faculty with four cameras and several PIR sensors, as depicted in
Fig. 10.1.

10.5.1 Sensor-guided Background Update

Algorithms of motion capture based on background subtraction rely on a very cru-
cial task: the update of the background, especially in presence of illumination
changes and moved objects inside the scene. For example, when the doors in Fig.
10.9 are opened, the background scene changes and the detection of people in that
area becomes unreliable. To this aim, we use sensors to monitor the area near the
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Figure 10.9: Opening and closeing doors make unreliable background suppression tech-
niques

doors. If the single camera processing detects a visual object in the door area but
the sensors do not capture events, then we assume that the motion is due to an in-
correct background. In such a situation, the background is updated by forcing the
area covered by the sensor directly with the input image.

More generally, each tracking system analyzes its list of detected objects. If
an object is still for a long time, then the correspondent camera thread makes a
request to the manager specifying the object location. The manager searches if the
concerned zone is covered by a sensor and, in such a situation, it responds with the
relative state. If the computer vision and the sensor network are discordant, then
the sensor is considered more reliable, and the vision system reacts consequently,
for example updating the background.

In Fig. 10.10 some frames from a single camera capturing the entrance of
our faculty are shown. The rows report, from top to bottom, the input frame, the
output of the tracking system, and the background model. Initially (first column)
the door was open. Some frames later a person has closed the door and from
this instant the background becomes inconsistent. In fact, the system erroneously
detects the presence of a person in the area of the door (see Fig. 10.10(e)). When
the PIR sensor placed near the door does not capture any events, the background is
correctly updated (last column).

10.5.2 Detection of Direction Changes during Occlusion

Occlusions are another problem that characterize video-surveillance systems based
on computer vision; for example, in the environments of Fig. 10.9, people can
walk behind the columns, and, in such a situations, the system is likely to lose
them. To face this problem, we have introduced some rules inside the tracking
system. When a track disappears, it is not deleted immediately, but its appearance
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(a) Input - frame 1076 (b) Input - fr. 2155 (c) Input - fr. 2156

(d) Output - fr. 1076 (e) Output - fr. 2155 (f) Output - fr. 2156

(g) Background - fr. 1076 (h) Background - fr. 2155 (i) Background - fr. 2156

Figure 10.10: Sensor-guided background update.

is kept unchanged and an estimation of the track position is computed exploiting
a constant velocity assumption. If the person returns visible again with a similar
appearance and a position near to the predicted one, then the system assigns the
same label of the disappeared track. However, if the person changes direction
during the occlusion, the system is not able to correctly assign the label anymore.

For this reason, we exploit a PIR sensor node placed behind the column. As
above mentioned, these sensors detect not only the presence of a person, but also
his direction. Then, we can detect a change of direction capturing couples of op-
posite direction events sent in a short temporal window. In such a situation, the
direction of the motion applied to the track is inverted in order to estimate the
position frame by frame.

In Fig. 10.11 an example of consistent labeling after an occlusion is reported.
The person walks behind a column and, during the occlusion, inverts his direction.
The computer vision tracking algorithm is not able to solve the consistent labeling
because the person appears again too far with respect to the predicted position
(computed with a constant velocity assumption). Using PIR sensors, instead, the
change of direction is detected and the estimated track position can be properly
updated. Then, when the person appears again, the tracker assigns the same label
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(a) Before occlusion (b) After occlusion

Figure 10.11: Consistent labelling after an occlusion exploiting a PIR sensor node to detect
direction changes

(24) assigned before the occlusion (see Fig. 10.11(b)).
Differently from the previous example, in this case the sensor network detects

an event and the manager thread informs the involved cameras of it. Then, if a
tracking system has detected an object in the corresponding position, the motion
direction is changed accordingly.

10.6 Conclusions

Distributed surveillance is a challenging task for which a robust solution, working
on a 7/24 basis, is still missing. This chapter is meant to propose an innovative
solution that integrates cameras and PIR (Passive InfraRed) sensors. The proposed
multi-modal sensor network exploits simple outputs from the PIR sensor nodes
(detecting the presence and the direction of movements of people in the scene) to
improve the accuracy of the vision subsystem.

Two case studies are reported. In the first, the vision system, based on back-
ground suppression, fails due to a door that is opened. Since background is not
immediately updated, the door is detected as a moving object (resolution is not
sufficient to enable a correct motion detection). In this case, a PIR sensor is used
to discriminate between the opened door and a real moving person. In the second
case study, a person changes its direction when it is occluded by a column. The vi-
sion tracking algorithm relies on the constancy of the speed during occlusions and
thus fails. A pair of PIR sensors are, instead, used to detect the change in direction
and alerting the vision system.

The reported results demonstrate that using the integration between PIR sen-
sors and cameras the accuracy can significantly be increased.



Chapter 11

Semantic Video Transcoding

11.1 Introduction

In this chapter we present a framework for remote surveillance. The proposed sys-
tem aims to keep under control an environment using computer vision techniques
to generate a compact representation of the scene and virtually reconstructing it on
mobile devices as final result.

Remote surveillance on mobile devices is becoming a wide market demand
in many contexts. First, centralized control centers for visual surveillance have
management costs much higher than a network of distributed and mobile control
points. Centralized surveillance also has some limits in terms of efficacy, since
people employed for watching tens of monitors and videos coming from hundreds
of cameras cannot keep their attention on all the controlled scenes. Therefore, there
is a high demand of connections between control centers and distributed mobile
platforms to send in real-time surveillance data, images and videos.

In the last years the technology of robust video streaming on mobile devices has
been improved but sometimes it is unfeasible or cannot be provided with an accept-
able quality due to the unavailability of the connection or the lack of transmission
stability. Moreover, the current standards GPRS or UMTS frequently insert a not
negligible delay in streaming transmission, so that surveillance images cannot be
received in real-time everywhere and every time.

A possible solution is the intra-media transcoding of visual data to textual in-
formation with a manual or automatic extraction of surveillance knowledge from
the videos. Examples are the detection of people, moving objects, or suspicious
abandoned packs in the scene, the counting of how many people are moving, the
estimation of their position and their behavior. The textual information can be
easily transmitted in real-time to mobile devices, that can show them in a textual
form or with a graphical interface, e.g. virtually reconstructing the scene. The goal
is the definition of a virtual environment corresponding to the real controlled one
where the useful surveillance data are kept. In such a manner the textual surveil-
lance knowledge can be transmitted in an affordable and robust way to mobile
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devices where the visual information can be reconstructed. Geometric 3D data on
the background scene are pre-loaded in the mobile device and only the dynamic
information is transmitted in real time.

Figure 11.1: Scheme of the overall architecture.

In the proposed architecture of remote surveillance platforms (see Fig. 11.1),
the video streams are processed in real-time by local servers, which extract the
surveillance knowledge on the environment, provide a semantic transcoding of the
visual data and make the data available for mobile connection.

The semantic transcoding can be provided in intra-media modality as well as
the inter-media modality above described. In the first case videos are processed and
modified in order to provide compression rates that are acceptable in remote mo-
bile connections without loosing important data. Differently from the inter-mdeia
modality the output of the transcoding system is still a video stream and not a tex-
tual information. As in [218, 219] background and moving objects can be coded
at different compression rates, sent separately and reconstructed at the client-side.
Instead, in the intra-media modality the scene is virtually reconstructed with com-
puter graphic techniques, allowing the transmission of few textual data only. This
second modality is less realistic but has several peculiar advantages. Firstly, the
3D scene is reconstructed so that all 3D information is available, new views can
be provided, different from the field of view of the camera and a virtual interactive
navigation is allowed. Secondly, there is the possibility to filter out some critical
data that should not be transmitted for privacy issues. For instance, current laws of
many countries do not allow the use of surveillance data in commercial sites such
as offices or super-markets. With a virtual reconstruction the privacy protected data
(e.g., the face) can be eliminated. Therefore we reconstruct the presence of peo-
ple in an environment, their motion, their trajectory, and their possible interactions
without any individual or biometric information. In this way, security employers
equipped with mobile devices can manage the multimedia information in real-time
interacting with the environment and in a total respect of privacy issues. In this
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chapter both the inter-media and the intra-media modalities are presented and dis-
cussed. We assume to have a computer vision module able to extract a list of
objects of interest. As described in Chapter 5, each object Oj detected in the time
t has a set of temporal attributes: position (x(t), y(t)) in the ground plane; the
bounding box BB in the image plane, appearance image A(t), that is the color
aspect, and so on. The objects recognized as a person inherit some additional at-
tributes, that are:{

Status(t) ∈ {moving, still}
Posture(t) ∈ {standing, sitting, crawling, laying}. (11.1)

This extracted information are annotated in a text file, that is the basis of a standard
annotation for stored video server that uses MPEG7 standard to keep informa-
tion for historic and content-based search. The textual data can be downloaded,
transmitted in a streaming manner over standard http-based connections to mo-
bile clients, or used by the transcoding server to generate semantically compressed
video streams.

11.2 Inter-media transcoding

11.2.1 3D virtual environment

In this section we directly present an application which consists of video surveil-
lance of an indoor environment. First of all, the 3D virtual indoor environment has
been built by using the JSR 184 software environments.

Figure 11.2: Input frame from a monitored room (left) and the output of the video surveil-
lance module (right) corresponding to the virtual reconstruction of Fig. 11.4. Blobs, posi-
tions, and postures of the detected people are super-imposed.

A frame of the reference room used in our experiments is reported in Fig. 11.2.
The background model is a 3D model made of mesh objects that refer to static
elements presents in the scene: table, chairs, cabinet with TV and pavement. For
representing the scene we used two ambient lights sources (instances of the am-
bient node class) in order to obtain a photo realistic rendering of the indoor envi-
ronment. The human figures are instances of the correspondent scene graph node,
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and include simple human textures. In fact a photo realistic representation of the
human figures is less crucial (in this application case study) than the actions tak-
ing places in the virtual environment. The application takes as input a textual data
stream coming from the video surveillance extraction module. These data stream
contains the extracted positions and postures of the tracked human figures. The 3D
virtual environment reconstruction module takes these data and renders the human
figures placing them in the environment according to their position and posture
data.

The rendered postures are taken as classes from the extraction module, in the
presented system four major classes are considered: standing, crawling, laying and
sitting. In order to enhance the system performances the animations are executed
at human figures positioning level and not on the models themselves. The system
is already capable of implementing animations interpolations as already written in
the past paragraph, but it is seems more reasonable to use them for other kind of
domains like children surveillance (where the running speed could be a measure
of the actual danger and it’s crucial to visually represent that data). The 3D virtual
environment also has many advantages, especially the possibility of changing the
point of view. We support three different points of view:

- Standard view: this view is basically the same as the calibrated cameras posi-
tioned in the real environment. It is very useful in order to have a general view of
the scene.

- Bird eye view: this view is very suitable for identifying the distances among
the human figures and the objects in the scene. Spatial positioning is an important
synthetic information to be used as a visual clue for detecting which actions are
taking place in the environment.

- Interactive view: this view, not only presents the scene with a certain angle
(usually the same as the standard view) but it is able to navigate the scene by
using three different camera motion modalities. These modalities are: move (allow
translations with respect to z and x planes), rotate (rotation among all the planes),
and float (allow translations with respect to y and x planes).

The 3D virtual environment thus could represent and effective approach for
easily visualize and detect people and action in a video-surveilled environment.
The use of multiple synthetic points of view clearly helps users in identifying dif-
ferent situations and by different angles of view. Since our system is extensible,
many different points of view could be implemented, for instance for certain do-
mains, a first person view could be useful for understanding the danger or damages
occurred in the environment (elderly people surveillance, and care).

11.3 Software components

The software components used in our approach are based on M3G (Mobile 3D
Graphics) library. This library consists of represents a high-level API (Application
Programming Interface) for the implementation of graphics rendering on mobile
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device. This choice leads us to develop a system in which the 3D scene rendering
is carried out by on client side (mobile devices).

The mobile 3D graphics libraries used in our system are included in the JSR
184 standard specification, thus enabling the support by a wide set of devices;
moreover this is a general approach because of the standard adoption of the M3G
file format specification.

The M3G file format represents all the objects present inside a three-dimensional
scene through the use of a tree structure called scene graph. Every node of this
structure describes and defines any physical or abstract object of three-dimensional
worlds (cameras, lights, meshes, animations).

Figure 11.3: Tree structure of the 3D virtual environment

The root of this tree is always a World object. Fig 11.3 shows a reduced version
of the tree structure used for building the presented 3D virtual environment.

In order to simplify the diagram, in the above scene graph we have not inserted
the Mesh objects that refer to static elements presents in the scene: table, chairs,
cabinet with TV and pavement. In our scene model two different classes of lights
are defined: spot and ambient. The Background object is represented by a back-
ground node with a colour attribute in the format RGBA (Red, Green, Blue, and
Alpha for transparencies). The interactive camera is a child of a Group object. This
object has the task of managing the camera translation and rotation on the y axis.
The camera object manages rotation on the x axis. With this separation all the
changes on x axis don’t have effect on camera movements and rotation on y axis.

The more complex objects are the two MorphinMesh that contain all necessary
data for the visualization and animation of classes of human figures (e.g., men,
children). The MorphingMesh class allows to define models animated through
morphing techniques: it requires to define the key models of an animation and an
automatic interpolation procedure will compute shapes vertexes transformations
needed for a smooth animation. By using the M3G file format and supporting the
JSA 184 standards we noticed that the application jar file including models images
and textures, testing data and source code does not exceed the 90kb.

More in detail M3G is a new standard file format, with extension m3g, used for
storing all the scene graph data and the information for loading them in a custom
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application. In this manner the data of a scene, comprised the animations, can be
created using common existing three-dimensional modelling programs. However,
there is not a standard approach for creating and exporting this kind of files. Thus
we decided to use a particular technique to import models in obj (wide spread
computer graphics format) data type.

Our approach for creating M3G files is inspired by Andrew Davison work
[220], which is based on the Java3D API. The approach consists of converting
three-dimensional models in a Shape3D object from which is possible extract the
vertexes, normal vectors and coordinates of texture lists. These lists are then op-
timized through the use of triangle strip. Finally a class is generated containing
all the necessary methods to create and manage (starting from the acquired lists) a
three-dimensional object in M3G.

11.4 Experiments

We provide several experiments in both indoor and outdoor environments. The
real-time performance of the served-side depends on the number of cameras, the
number of people and their size in the image space. In outdoor environments with
cameras mounted in a high position tens of people can be captured from 4 cameras
at about 10fps. The same performance is achieved indoor with 2 or 3 people as in
the previous examples.

Figure 11.4: Example of different views of a3D virtual environment. a) standard view, b)
interactive view, c) bird-eye view.

An example of the output of the indoor system is reported in Fig. 11.4, where
the three different views (standard view, interactive view, and bird-eye view) cor-
responding to the input frame of Fig. 11.2 are shown.

11.5 Intra-media Transcoding

11.5.1 Introduction

In this section a smart video server, implementing new semantic transcoding tech-
niques to connect directly with PDA clients, is described. The transcoding model,
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using the philosophy of MPEG-4 object-based compression, allows video stream-
ing of part of the videos that are semantically valuable to the user: it compresses
differently objects and event and operates also a temporal and size downscaling.

11.5.2 Related Works

Semantic transcoding is often employed in streaming severs to adapt the multi-
media content and, specifically, reformat video code, in order to cope with user
needs and user constraints [221]. Typically, variable compression, size, and color
downscaling are useful to save bandwidth and deal with limited display resource
of devices such as PDAs. The exploitation of semantics at this level means to use
the knowledge of the video content to compress the video differently in the space
and in the time. The MPEG-4 standard was the first structured proposal to han-
dle differently background and foreground objects in the scene, to compress them
and to send to the user for a specific encoding. At the same time, MPEG-4 Core
Profile (needed for object functionalities) codec is computationally heavy and a
real time decode and encode phase can now be achieved with hardware acceler-
ator only. Thus, we proposed some simplified version that can be exploited also
with software codec only [222], and in this section we describe a solution spe-
cially conceived for PDA clients. The valuable contribute of this proposal is to
define a semantic transcoding server operating on-the-fly in cascade with the com-
puter vision system. In such a manner the knowledge of segmented people and
objects guides the adaptive compression. In [223], a similar approach for traffic
surveillance is proposed, where objects are segmented and compressed differently
in MPEG-4 standard for an offline annotated video server. Further, in [224] not
only an object transcoding is discussed, but also the semantics is exploited at level
of both objects and events. This unified framework is here presented in a domotics
context and tailored for PDA.

11.5.3 System Architecture

The system is structured as a client-server architecture as in Fig. 11.1. The server
side contains several pipelined modules: in domotics video surveillance, the mo-
tion is a key aspect and, thus, object detection and motion analysis is embodied in
the first module. The output of this module is the set of the moving visual objects
along with their features (shape, area, color distribution, average motion vector,
and so on). These objects are tracked along time and processed to firstly classify
them; the objects classified as people are further processed to detect their posture
in the second module and, from it, to identify a given event. Events are modeled as
a transition between two states of a Finite State Machine representing the posture
of the person. Thus, the event “falling down” is modeled as the transition between
“standing” (or “sitting”) state and the “lying down” state. The next step of seman-
tic video transcoding is independent from the implementation of previous modules.
The TPR (Transcoding Policy Resolver) input is a set of classes of relevance (de-
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fined as couples <object,event>, as detailed in the following) and the associated
weights that define the relevance of each class (see Fig. 11.1). These information
are processed by the Transcoding Server to apply selectively transcoding policies
depending on the current event and on the objects in the frame.

In conclusion, what the server side sends in the network is a MJPEG-like
stream of data in which the background and the moving objects are sent in a com-
pressed, proprietary format, described in the following. At the client side, we
developed a software for Pocket PC 2002 operating system working on a Com-
paq iPaq H3850 PDA able to interpret this stream and to re-compose the scene in
an efficient way. The modularity of the proposed architecture allows quite easily
to change the system to adapt to the user’s requirements by adding/replacing the
algorithms.

11.5.4 Transcoding Server and PDA Client Application

As depicted in Fig. 11.1, we developed a client-server architecture. To this aim,
we implemented a multi-client and multi-threaded transcoding video server called
VSTServer (Video Streaming Transcoding Server). Among the different threads
present in the server, three are critical: the first downloading thread (T DW) is de-
voted to acquire sequence of images from the network camera in streaming mode.
The second inquiring thread (T IN) establishes the communication between client
and server and sets the transcoding policies. Whenever the initial parameters (re-
quests of size, bandwidth, etc.) are set, the connection between client and server
is passed to a third execution thread (T EX). From this moment, another client can
connect to the server. The threads are decoupled to allow the maximum frame rate
in getting the image from the camera, despite the possible slowdowns due to slow
clients. The communication between the two threads is based on shared buffers
(in which the T DW puts the image and from which the T EX picks it up), with a
semaphores based protocol to obtain the synchronization between the two threads.

If we know (from the user or automatically) which is the relevant semantics in
the video context, we can exploit it to selectively transcode the video: the band-
width saved by degrading the not relevant contents can be used to increase the
quality of the relevant contents.

What we used to quantify the importance of the semantics are the classes of
relevance. A class of relevance is defined as the set of meaningful elements in
which the user is interested in and that the system is able to manage. Formally, a
class of relevance C is defined as a pair C =< oci, ej >, where oci represents an
object class and ej is an event class, selected between the set of object classes OC
and event classes E detectable by the system:

OC = {oc1, oc2, ..., ocn} ∪ {õc} ; E = {e1, e2, ..., em} ∪ {ẽ}

The special class õc includes all the areas of the image that do not belong to user-
defined object classes (for example, the background is considered as õc). Analo-
gously, the event ẽ includes all the non interesting events or the case of no-event.
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The user can then associate the set of weights wi to each class of the set C: higher
the weight, more relevant must be considered the class and the TPR will apply a
less aggressive set of transcoding policies.

Thus, in the simplest case we can consider only oc = {people, background}
and, without taking into account events, we can treat object classes differently
compressing them in different ways. Moreover, to allow the re-composition of the
scene (background plus superimposed people tracks) at the client side, also the
alpha planes (i.e., the binary mask describing the blob of the person) are sent to
the client. To reduce the bandwidth occupation, the alpha planes are compressed
with the lossless Run Length Encoding (RLE) coding. Summarizing, the server
produces and sends to the client a stream built as in Fig. 11.5. The stream is em-
bodied in an HTTP connection with a multi part MIME header and consists of
sequences of JPEGs at different compression, preceded in the case of objects by
their identities and RLE information.

Figure 11.5: Example of HTTP stream produced and sent from the server to the client

Thus, the background and the V Os are sent separately and with the syntax
above reported. The V O identity is sent for another functionality of our transcod-
ing system that keeps the people track with that identity with the best quality and
crops it from the image [224].

At the client side, this stream is decoded, background and V O are superim-
posed, and the resulting video is visualized on the PDA by applying further scaling
and general adaptation to the PDA capabilities.

More in general, not only background and V Os can be compressed differently,
but both objects and events contribute in the selection of the best transcoding pol-
icy, as in the test that will be discussed in the next section.
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11.6 Experimental Results

The architecture we proposed is composed by several pipelined modules and a
complete performance evaluation should detail performances achieved at each stage.
A first performance analysis is oriented to measure the efficiency in terms of re-
activity and processing speed. SAKBOT upgrades the background model with n
frames extracted with a ∆t subsampling. If the system is directly connected to
a standard camera (25 fps), the normal parameters we adopted are ∆t = 10 and
n = 7 and wb = 2 in Eq. 2. Thus a changed value in background pixel due to the
median function affects the background model at most after n+wb

2 ∆t frames and
thus after about 2 seconds. Instead the Timeout parameter (Eq. 1) is set sufficiently
high to avoid that misdetection errors cause significant objects to be included into
the background model: typical values are k∆t with k = 10. Therefore a little
change in luminance or small background modification is captured with a delay of
2s while a strong change (as a moved chair) is captured normally after 4s. If the
system is connected to a network camera these times are changed since the video
streams is affected by possible network bottlenecks in the T DW thread; we tested
that these delays are negligible in Intranets based on Ethernet or Wi-Fi connection.

Then Sakbot provides background suppression, segmentation, shadow removal,
VO feature computation and people classification at each frame and the speed is
proportional to the number and size of VOs extracted. In the common case of a
single person in the center of the scene (occupying about 10% of the frame), SAK-
BOT is able to work at a speed ranging between 10 and 20 fps. The people posture
classification do not introduce any sensible delay in performance. At the end the
system can change the event status at least every 100ms and detects an alarm situ-
ation with this reaction time (actually although an alarm –person lying down– can
be set after user defined delay).

Finally, the time performance depend on the network bandwidth and the client
speed. The client application, called SeeImage, on Compaq iPAQ PDA, that has to
decode the object based stream, is written in Embedded C++ for Windows CE and
is sufficiently quick not to introduce delays (in average, depending on the number
of objects) thanks to the multi-threaded application. Directly connecting the client
to the LAN, using the USB interface of the PDA, allows to obtain between 10-18
fps at a QCIF size when interesting events are detected. This numbers decrease
considerably when a low bandwidth connection is available, such as GPRS. In this
case, even if semantic transcoding is performed, on average 5-8 fps are obtained
for simple scenes with a single person in the scene. In the video we report as test
(see Fig.11.6) with semantic transcoding only, we achieve an average bandwidth
of 88 kbps. With GPRS (about 55 kbps) we must add a temporal down scaling and
thus we can reach about 8 fps, that is acceptable to see the scene fluently.

Another critical point is the well known problem of evaluating performances
in terms of quality and precision. In general we could consider performance at two
levels:
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• perceptual level, meaning that we should compare the output of processed
videos with the original video in terms of pixels processed or transferred;

• cognitive level to compare the results of the video-surveillance system in
terms of detected objects or events, with reference to the possible similar
results of an human person controlling the scene.

The results of the initial moving visual object detector module can be evaluated
at both levels. Perceptual analysis refers to the count of correctly and mistakenly
segmented pixels as VOs, shadows, ghosts [1]. Cognitive level performance counts
the correct visual objects that are detected and tracked frame by frame. In standard
situations, testing Sakbot on hours of videos, all the interesting objects have been
detected on the 95% of the frames, and no objects were lost due to the tracking
algorithm.

Figure 11.6: PSNR results for each frame, divided into classes and comparison with the
other algorithms

For this indoor transcoding results, we set the following classes:

OC = {person, chair, door} ∪ {õc}
E = {no motion, O moving, P lying} ∪ {ẽ}

A remote client could be interested to see everything that is moving, or as in
our application only in people lying on the floor. This three classes can be defined:

C1 = {chair, ∗}|{door, ∗}|{õ, ∗}|{∗, ẽ}
C2 = {person,¬P lying}
C3 = {person, P lying}
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(∗ is the wildcard) and a user could set a low, medium, and high interest for the
three classes respectively, setting for instance the compression factors to 10, 20 and
90. In the results of Fig.11.6 it is possible to see the performance of our system on
the three classes compared to MJPEG and MPEG2 (that we have available also on
the PDA), on a frame by frame basis. With respect to MJPEG we can achieve better
results, by the use of semantics (seldom sending of the background). On average,
the results are comparable to MPEG2, but when a person falls down (frame 307
to 399), we can exploit the larger bandwidth available (because we are sending
smaller images) to boost the resolution to very high quality.

(a) Bounding box detection (b) Semantic transcoding

Figure 11.7: Example of content-based video adaptation.

An example of content-based video adaptation is provided in 11.7 where the
event “fall” calls for a better quality transmission of the frame region containing
the fallen person.

11.7 Conclusions

Our end is the remote monitoring of the behavior of people moving in a scene
exploiting a virtual reconstruction on low capabilities devices, like PDAs and cell
phones. The main novelty of this system is the effective integration of the computer
vision and computer graphics modules. The automatic video surveillance module
extracts sufficient information to allow a virtual reconstruction of the environment
on low capabilities devices, and, differently than a video stream, the bandwidth
required to transmit this data is affordable and the system is working in real time.



Chapter 12

Conclusions

12.1 Achieved Objectives

This thesis is the result of three years of my Ph.D. studies. The main objective
was the study, analysis, proposal and development of architectures, models and al-
gorithms for people video surveillance. During these three years all the modules
needed for a real videosurveillance system have been considered, starting from the
low level foreground extraction to the high level posture detection. In particular,
the main contribution of my work can be referred to the high level reasoning mod-
ules, such as the face detector and the posture classifier. The posture detector has
been used in a Domotic project as a valuable help to disabled people and elders,
to recognize and to send an alarm whenever the monitored person falls down. The
face detection task, instead, has been used in two different situations: to extract
faces for recognition purposes and to remove faces for privacy issues. Our inte-
grated framework of head tracking and detection achieved very good performance
both in term of efficacy and efficiency.

Together with the proposal of new paradigms and techniques, I have been in-
volved in the development of real implementation of videosurveillance systems.
In our campus we have installed a test setup composed by four cameras (See Fig.
8.1). I have realized a C++ Library comprising classes for image processing, mo-
tion detection, object tracking, as well as video source management, video output,
graphical interface, and so on.

12.2 Publications

This research activity has produced the following publications:

• On the first part (detection and tracking), one article in international journals
[71] and three publications on international conferences [17, 75, 225].

• On the second part (People Video Surveillance), three articles in interna-
tional journals [87, 226, 227] and five papers in international conferences
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[104, 228–231].

• On the third part (the Integrated surveillance system), one chapter in a book
[232], one article in international journal [233], and seven papers on interna-
tional conferences [15, 92, 140, 234–237].
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