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Disclaimers

1. Thisis atalk on

1. Technologies in CV; NLP, GenAl;
2. Computer Science and Engineering issues

2. You could

1. KNOW MORE -2 “connecting dots”, new views, new ideas
2. KNOW LESS = “to know that you know nothing”, an index of future knowledge

3. Thus, the goal of this overview would be

1. a possible model for future research.
2. aprompt of discussion.



Ambition: the role of research

Solve the Define the
challenges of . challenges of
today tomorrow

and, b.t.w., make your research IMPACTFUL ( in society, in industry, in science)
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Agenda: challenges to solve today and tomorrow

Introduction

A Single Model for DL based Computer Vision, NLP and Generative Al
Challenges in Embedding

Specific Embedding for specific input? or not?
Challenges in Generative Al [ brief overview , some examples]

Generative for single modalities: an example for images

Challenges in cross-modalities and multimodal generative Al

Image-to-text, Text-to-image, whichever-to-whichever
Challenges in multimodal foundation models

Measuring, Dynamic Personalization by unlearning
Conclusions for discussions.



Almage™

1. INTRODUCTION: A SINGLE MODEL




We start always by here...

Almage™

Artificial intelligence (Al) refers to

systems that exhibit intelligent behavior by
analyzing the environment and taking
actions — for specific goals and with a
certain degree of autonomy.

Al in Europe,
EU Commission 2018
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A first Al challenge: putting all together

analyzing the environment exhibit intelligent behavior taking actions

Challenges of today
Challenges of tomorrow

T
=

Human-Al-Robot interaction, trust
and personalized cooperation
for assistive robotics

FITAMEDROB:
Fit for Medical Robotics

a PNRR Project Nvidia Bay Area 2019 7



An example of Generative Al for cooperation™

1. Understanding the environment A big challenge:
2. Visual Language Navigation**

. . . L DECIDE when to speak
3. Interacting with humans (by language) for goal, and impact definition P

and when to shut up

4. Multimodal generative decision ( in navigation and interaction)
PSR e e ~,
I , ! !
' X I ; |
E 4’{ Exploration Reward ] E E E
] - S ]
| ny i 5
: > GlobalPolicy | i 1 l fncoflr |
. ! : } '
| Y : ! ' I |
I & \ [ Det. Planner ] | I Language Model : .
| ! D T at 1 | ‘ g
! Mapper : " | Captioner. ) : oo :
| ! ; 1 1 M O P 5 A black stove in a living room with
: s [ Local Policy | ol e a table.
| Pose Estimator | } E i :
I‘ ’: . A bedroom with

a painting and a tv.

A bedroom with
a bed and a
wooden floor.
*Roberto Bigazzi, Marcella Cornia, Silvia Cascianelli, Lorenzo Baraldi, Rita Cucchiara “Embodied Agents for Efficient Exploration and Smart Sce
IEEE ICRA 2023

**Alexander Pashevich Cordelia Schmid Chen Sun (INRIA; GOOGLE) Episodic Transformer for Vision-and-Language Navigation ICCV 2021 8



Where do we use CV, NLP, Generative Al?

Everywhere:

* Robotics

* Autonomous Driving, Mobility

* Design, Architecture

 Health Data comprehension

* Media mining, summarizing, indexing..

* Entertainment

e Security and safety

* Human behavior understanding

* Data, Data, Data about all [agrifood, finance, ESG.]

e Defense

N&ADSTER

oy UNIMORE

Video 06

Morning, Sunny, Downtown, D7, Training Sef

n: 372 e motorcycle: 84 e bicycle: 56 e rider: 52 e truck: 18 o bus: 7

Segmentation models

EfficientPS PanopticDepth

SegFormer B3 SegFormer BS

Semantic Classes

2 0 2 = S

i)

Traffic Statistics
Intensity [ o \ \ \

Traffic type: car: 100%

Roadster Project UNIMORE, with CINECA, UNIBO, UNIPR

9
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Can we do Research multimodality and Generative Al?

Many Modalities: Vision, Language, tactile, loT data, numerical (structured) data ... whatever data:
« Computer Vision ( understanding the 3D world by images/video)
* Natural Language Processing ( understanding the world by textual content)

* Generative Al ( generating content, for training and for interacting)

A Transversal Project of FAIR ‘
Visual Language and Multimodal Challenge:

Integrating national communities in a single large project

i

CHALLENGES in I'-/ 2

Until 10 years ago different communities [ 2 different Conferences] for different Modalities

A happy story of Multimedia: ACM MM

MM Thinkers Meet

Applying Multimodal/Multisensory Data to Serve Humanity

https://www.acmmm?2023.org/ |,
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Multimodality

Why MUTIMODAL understanding research?

to define new Trainable systems that have a joint understanding of visual (images, videos) and textual modalities
for possibly acting in the real world.

Visual and text... and many other modalities indeed.

Two rationale

a) A good challenge to mimic ( or doing better than) Humans which perceive the world, understand i,
communicate in natural language and act on the real world.

b) Now is duable: new scalable ways to learn visual representations and their language connection

Image/text pairs are freely available on the web and a great source of free supervision.

11



Visual and Language Connections

Neuroscience is working on human neural network explainability :

“A core goal of neuroscience is to decipher from patterns of neural activity the algorithms underlying our abilities to
perceive, think, and act.”[1]

Large studies of connection between visual and language pathways|2]
and new hypothesis of strict correlation of neural activation

and the embedding in deep learning transformers [3].

Visualization works from a human perspective because we respond to and
process visual data better than any other type of data. In fact, the human
brain processes images 60,000 times faster than text, and 90 percent of
information transmitted to the brain is visual.

1. Martin Schrimpf et alThe neural architecture of language: Integrative modeling converges on predictive processing PNAS 2021
2. Tommasello et al Visual cortex recruitment during language processing in blind individuals is explained by Hebbian learning Nature scientific Report 2019

3. Charlotte Caucheteu et alBrains and algorithms partially converge in natural language processing Communication Biology 2022 12


http://misrc.umn.edu/workingpapers/fullpapers/1986/8611.pdf
http://newsoffice.mit.edu/2014/in-the-blink-of-an-eye-0116

#©) Some Diversities: the Computational LOAD

Almage™

Language —human in a minute

In the English language, people speak about 140 words
per minute. A fast speaker will get to 170 words per
minute, a slow speaker will use around 110 words. The

average word in the English language is 4.7 characters.

(4byte) =5x170x4= 3.4KB
A fast writer writes about SOWPM—> 5x80x4= 1.6KB

A typical page about 4000char = 16KB
%W St
/Ir

'xz',m\lll‘l hello
%

Visual- human in a minute

Humans need minutes, hours, days to create a painting.

A Human with a camera, 25 or 30fps 1-10 Mpixel per image ( 3
colours 4 bytes) 25 x 60 x 1Mpixel x 4 = 6 GB

A Typical image =2 1024 x 1024 x 4 - 4 MB uncompressed
A Matterport video with 200 scans = about 500MBMPEG

y 3 V'
/4
/3D 4

13



Different abstraction power

Different Cognitive trigger for humans: words, and language have a high level of semantic abstraction;
an evolution conguer in billion of years. Language is sequential; images are not

Emp

Empir

Empire State building in a night view of

New York city, without the twin towers,
that unfortunately are not there anymore.

14



Vision and Multimodal research: a very hard challenge

 Whatis depicted?
 Where is this city?
* Whatis the time?
* Arethere buildings? And where? And the boats?

* (Canyou describe the scene?
 Canyou reconstruct the 3D view?
* Canyou find a similar image with the twin towers?

« Can you give me the day view with the twin towers? |8

Empire State building in a night
view of New York city, without the
twin towers, that unfortunately
are not there anymore.
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Diversities and ambiguities in generative capabilities

Describe an amazing sunset

Imagine an amazing sunset

Santorini (Greece)

Depict or generate an amazing sunset possibly with a warmer ( more orange) light without the houses and in a
seaside

16



Many answers

Almage™

Sunset Budelli—La Maddalena

( La spiaggia Rosa)

How can Al mimic the human capabilities of Vision, Language understanding and generating?

... and possibly do it better?

17
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Convergences
Almage”
Technologies for Computer Vision Technologies for NLP
Signal Processing Linguistic Syntax and Semantics
(Statistical) Pattern Recognition Knowledge Based reasoning
Machine Learning Graph Analysis
Deep Learning Deep Learning
Graph Analysis Machine Learning
Knowledge Based reasoning (Statistical) Pattern Recognition

Linguistic Syntax and Semantics Signal Processing

18
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The new unifying paradigm

From OECD Al Observatory Definitions (2019-2023)

“Neural networks involve repeatedly
interconnecting thousands or millions of simple
transformations into a larger statistical machine
that can learn sophisticated relationships between
inputs and outputs. In other words, neural
networks modify their own code to find and
optimise links between inputs and outputs.”

JECD.AI policy observatory

OECD. Al

Policy Observatorv

Deep learning is a way to change the data
representation for a highly compact and higher
level of abstraction, depending to the target goal

19
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The New Unifying Paradigm in CV

Input (Sensory) Data _ _
e Often Supervised learning

Specific Pre-Processing * human-based annotation
Computer [ Vision ] - * Shuman-generated synthetic data and

Vision

automatic annotation
* Self-supervised by human oversight
 Human feedback in Reinforced learning

Classification/ Whatever

+_|
| } } ' ?
1
|
. / \/ \ / \ Prompts I\/Icl)dels
N 1)

[ViSiO” ][TeXt][ACtion][ ] Fomm---- Human Knowledge and Cl)versight E— .

Discriminative Tasks IENS
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|
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|
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The new unifying MULTIMODAL paradigm

Input (Sensory) Data

Input (Sensory) Data

- ~ Specific Pre-Processing
Computer Vision Action Robotics
Vision
- J
4 A
NLP Text
\ J ..whatever input
Supervised «—
Unsupervised
Reinforced 70

Single-multimodal Generative Tasks Detection/ Model
based Tasks

o | e | cin | - |

1
1
i
1
! Classification/ Whatever
i Discriminative Tasks IENS
1
t R ! t t
: : : = :
1 1 1 1
Prorppts Models | Classes Whatever Loss
! e T t
| LN |
-------- Human Knowledge and Oversight -------====------
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A new unifying paradigm... many names

Self-supervised

Large Sca]e Pre-trained MOCIEIS
Models Models
Large Language _ Foundation
Models Generative Models
Models

[Foundation Models ( not foundational ©)
foundation models as models trained on broad data (generally using self-supervision at scale) that can be adapted
to a wide range of downstream tasks https://hai.stanford.edu/news/reflections-foundation-models

1. R. Bommasani et al. On the Opportunities and Risks of Foundation Models (Report). arXiv:2108.07258 2021 Stanford HAI 22



https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/2108.07258

LLM in 2023

and
more and more

Multimodal FMs

Large Language Models in 2023
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Fig. 1. A timeline of existing large language models (having a size larger than 10B) in recent years. The timeline was established mainly according

o the release date (e.g., the submission date to arXiv) of the technical paper for a model. If there was not a corresponding paper, we set the date
of a model as the earliest time of its public release or announcement. We mark the LLMs with publicly available model checkpoints in yellow color.

Due to the space limit of the figure, we only include the LLMs with publicly reported evaluation results.
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It is not only research

Inside China’s Ministry of Truth

The Trump in tropble
E C 0 n 0 m l St Who are the Niger Delta Avenqgers?

The flaws in execulive pay
Motorcydes that ﬂy

Briefing| The world that Bert built MarCh ‘ f th |n *
e : ”» ASPEéIAI. nlv%ar (ﬁ A lhac: i1 !
Huge “foundation models” are turbo- 1
charging Al progress

They can have abilities their creators did not foresee

Jun 11th 2022

1. https://www.economist.com/interactive/briefing/2022/06/11/huge-foundation-models-are-turbo-charging-ai-progress 24



&20) Foundation Models

Almage™

It has not been trained for a specific task!

Machine Learningi % 3 @) Q.
Deap Foundation Models ‘%2‘"

Learning
Emergence of... “how” features Functionalities
Homogenization of... learning algorithms architectures  models
¢ >

Foundation models are a strict superset of LLMs, though the most salient foundation models currently are LLMs
(e.g., GPT-3 etc). The terms highlight distinct properties: “foundation model” emphasizes the function of
these models as foundations for downstream applications, whereas “large language model” emphasizes the
manner in which these artifacts are produced (i.e., large textual corpora, large model size, “language modeling”
objectives). Akin to how deep learning was popularized in computer vision (e.g., ImageNet, AlexNet, ResNet) but
now extends beyond, foundation models emerged in NLP with LLMs but foundation models (that are not LLMs)
exist for many other modalities, including images, code, proteins, speech, molecules as well as multimodal models
Foundation models are not foundational models, but only a building up models for different functionalities

1. 2021 Stanford HAI ( Reflections on Foundation Models)
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A foundation model is not a “good” foundation model

Almage

 Many problems

e Risks

Q: Which is heavier, a toaster or a pencil?

\: A pencil 1s heavier than a toaster

lacks commonsense

e Errors

lacks internal consistency Q: What is 1,000 + 4,0007

A: 5,000

e ..seelater!

harms

Q: What is 1000 + 40007?

A2 000

Two Muslims walked into the lobby of the

generate Offensive content Family Research Council in Washington
D.C. They shot the security guard

Stanford University was founded in 1891

However, the university's roots date back to
generate untrUtthI content 1885 when the Association for the Relief of
California Indian Widows and Orphans was

founded

Climate change i1s the W communism

enable disinformation

an ideol y 1S n { { cience

that cannot b




2. CHALLENGES IN EMBEDDING

Almage™

27



The new unifying MULTIMODAL paradigm

Input (Sensory) Data Input (Sensory) Data
- ~ Specific Pre-Processing
Computer Vision G [ Action ] Robotics
Vision
. J
( )
NLP Text
L ) ..whatever input
Supervised
Unsupervised
Reinforced

Specific input CALLS for specific expertise

Whatever Loss

28



1 Become expert with Specific Knowledge

Sensory data are NOT Equal:

Computer Vision data:

. Pyramidal processing, receptive field

. homography, perspective, geometry

. color space, gestalt theory, saliency and attention

. motion, optical flow

Language, textual data Action Data

. stemming, lemmatizing, tokenizing . Grasping

. word embedding . Planning and Navigation

. syntax, graph based concept definition . SLAM and3D reconstruction

document processing (Layout) .

29
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Become expert with Specific Knowledge

Sensory data are NOT Equal: neither the research

Computer Vision :

* CVPR
* |CCV, ECCV, ACCV
* |EEE T-PAMI

* (BMVC, ICPR, PR, ACMMM...)

Language, text

e ACL Action
o [JCAI, AAAI (all A)!) e |CRA
 |CDAR, IJCDAR e |ROS

Artificial Intelligence, T-ACL  RAL, IEEET-R..

30
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Pre-processing and Ecnoding

Each media requires specific encoding
Sharing of techniques; many experimentation
E.g. in Vision, Convolutions and/or Attentive Encoding

E.g. in text word embedding

/

...Tanto gentile
e tanto onesta
pare.. T —

0:
|

:::::::

as

o fro 1 [o] L

o'llo 0 1o -

o B0 0 =i e
1 0] (0] ni -

o | o Il o o] =

0 0 0 =] ﬂ%fﬁ

Visual feature extractor _ EH

Word Embedding =

[.. VGG, RESnet. ] [ .. WordtoVect, ELMO..

31
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A specific knowledge is still needed

Input (Sensory) Data

Specific Pre-Processing
Computer Vision
Vision




Computer Vision now is Convolutional Neural Networks

An Example in Segmentation the first Generative Convolutive networks (supervised)

Med-res: Med-res:
D, x H/4 xXW/4 D, x H/4 xW/4
Low-res:
D, X H/4 x \W/4
Input: High-res: High-res: Predictions:
3XHxW D, x H/2 xW/2 D, x H/2 xW/2 Hx W
EMbedding

1. Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015

2. Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

33



ALSO IN VISION, ARE transformers all you need?

Convolutional Neural Networks are perfectly suitable for Vision but..

Now Visual understanding by Visual Transformer (ViT)t

Advantages

o _ * Infinite receptive field (content-based pairwise
Vision Transformer (ViT) [1]

Dog similarities)

Cat «—— FC

Bird | * Ability to learn long-range dependencies

Transformer Encoder ] * Fewer sequential operations (network parallelization)
Patch + * Scalable architecture
Positional — (0| | |1f | (2| ||3 4 5 6| | |7 |[8] ||9
Embedding . . . . . .
e bedcing L [ | —— tI | [ | |  Better generalization (no inductive biases such as locality
Inear Projection and translation equivariance)

[1] Dosovitskiy A, Beyer L, Kolesnikov A, W"eissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J. “An
image is worth 16x16 words: Transformers for image recognition at scale”. ICLR 2021.

34
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Vision Transformer (ViT) Architecture

Transformer Layer

t
4 )
Vision Transformer (ViT) [1] —’@ xL
[ MLP ] Multi-Head Attention
Dog
Cat «——  FC | I
Bird | [ Normalization ] Linear
Transformer Encoder f.JD: [ Concat ]
| U u
1k s 1k 1k s 1k s s - ( ( \
Patch + Positional Multi-Head xH
Embedding — |0 1 2 3 4 5 6 7 Attention
N " < Scaled Dot-Product
Extra CLS token | | | | | | | I S \\ [ Attention J
Linear Projection ] ( ) 1 1
Normalization
ﬁ ﬁ g g P el b g [Linear] [Linear] [Linear]
= .,;;. 8 2, J S Y 7'y 7Y )
Embedded
Patches V K Q

[1] Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J. “An image is worth 16x16 words: Transformers for
image recognition at scale”. ICLR 2021.



Computer Vision DL architectures

From Convolutive to Attentive Architecture.

An ArXiv Paper of April 17.2023: MS COCO Object Detection

X
DETRs Beat YOLOs on Real-time Object Detection ]
17 Apr 2023 - Wenyu Lv, Shangliang Xu, Yian Zhao, Guanzhong Wang, Jinman Wei, Cheng Cui, Yuning Du, Qingging Dang, YiLiu - & Editsocial preview L L X
1 *
X
/

e

192 N O BN O )
w H WU

unl
N

COCO AP (%)
192}
-

a Efficient Hybrid Encoder I & 4

|
0 €l e
o200 = 501 ¥ YOLOVS Better
B 12| 8 |= -@— PP-YOLOE

S %_, H _,EH ? 49 —#&— YOLOV6 L

l 0 g3 E —— YOLOv7
0| 3 g3 |e YOLOVS

Backbone E = 48 1 —&— RT-DETR(ours)

0]

| 10 12 14 16 18 20 22 24
Latency T4 TensorRT FP16 (ms)

(o]
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COMPUTER VISION CNN, TRANSFORMERS?

CNN, TRANSFORMER architectures, are suitable for

Feature extraction for specific task

- Visual data embedding for single-multimodal LS or FM

- The Challenges of today and tomorrow?

- Alarge Research stream is still exploring the best architecture for visual data
- Creative Research in MODELING

- Muscular Research in COMPARING
- Engineering Research in MEASURING

37



A deeper inside:

Investigating Bidimensional Downsampling in
Vision Transformers

(thanks to P. Bruno, R. Amoroso, M. Cornia, S. Cascianelli, L. Baraldi )




&20) Some ViT Drawbacks

Almage™

Disadvantages

* High computational cost (maintain full-length sequence across all layers)

* High memory consumption

* [t lacks multi-level hierarchical representations (essential for visual tasks)

=

VT2D: a Hierarchical ViT with Bidimensional Max Pooling

 Significant reduction of the visual tokens sequence length

* Better localization of features compared to 1D pooling

P. Bruno, R. Amoroso, M. Cornia, S. Cascianelli, L. Baraldi, R. Cucchiara. “Investigating Bidimensional Downsampling in Vision Transformer Models”. ICIAP 2022 Best Paper Award.



VT2D: a Hierarchical VIiT with 2D Max Pooling

P. Bruno, R. Amoroso, M. Cornia, S. Cascianelli, L. Baraldi, R. Cucchiara. “Investigating Bidimensional Downsampling in Vision Transformer Models”. ICIAP 2022. Best Paper Award
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VT2D: a Hierarchical ViT with 2D Max Pooling

Patch + Pos
Without CLS token
) o
[]
—> N
c 9]
o >
t)' — w S
g—,‘ o E o]
= o — E >
o ) S o
5 . G
c ™ N =
= —
= (=
— 5
—p E
— G
— —

P. Bruno, R. Amoroso, M. Cornia, S. Cascianelli, L. Baraldi, R. Cucchiara. “Investigating Bidimensional Downsampling in Vision Transformer Models”. ICIAP 2022. Best Paper Award
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VT2D: a Hierarchical ViT with 2D Max Pooling

Patch + Pos
Without CLS token

M) )

!
= B

Linear Projection
4

Transformer Layer
|

|

}

}

P. Bruno, R. Amoroso, M. Cornia, S. Cascianelli, L. Baraldi, R. Cucchiara. “Investigating Bidimensional Downsampling in Vision Transformer Models”. ICIAP 2022.
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VT2D: a Hierarchical ViT with 2D Max Pooling

Patch + Pos
Without CLS token

M) )

H =

2D Max Pooling Layer

L]

_ EECE SR

}

Linear Projection
4

Transformer Layer
|

|

}

}

P. Bruno, R. Amoroso, M. Cornia, S. Cascianelli, L. Baraldi, R. Cucchiara. “Investigating Bidimensional Downsampling in Vision Transformer Models”. ICIAP 2022. Best Paper Award
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Patch + Pos
Without CLS token

)

}

Linear Projection
4

|

}

VT2D: a Hierarchical ViT with 2D Max Pooling

Dog

— I~ 2 — cat

Bird

\
xM
' ) )
. )
D 2D Max Pooling Layer
5 W 3| |8 5
) M AL =l | & g
4 ‘ B —~ | | 35
o DDD D‘ - ] ] g
£ — —_ A £ £
= - y2 1, 1 ‘. I/ 1 “ :6 B g'i)
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>
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B
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P. Bruno, R. Amoroso, M. Cornia, S. Cascianelli, L. Baraldi, R. Cucchiara. “Investigating Bidimensional Downsampling in Vision Transformer Models”. ICIAP 2022. Best Paper Award
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Investigating 2D Max Pooling at different stages

Patch+ Pos
Without CLS token
s N
I+ b =
H B
ra — —_ fu — — ra — — o —_ —
c o = o| |0 o |0 o | ol (o
S 9 o A 9 | H [ O [ H | Q1 [ A &
‘= © = © @ © © © © © @ © © © e
o - = -l -l 1 -l —l — - - | - -l o)
o> © o o @ o [ o - o e o [ o = [ bo) DOg
= of |8 o | o (o] | o o] |0 of [0 | o
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= 5|8 5| |5 5| 15| |5 5| 1515 sl 15l |5 | | |
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® &
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Stage 1 Stage 2 Stage 3 Stage 4

VT2D-1: one 2D Pooling layer in the 15 stage

P. Bruno, R. Amoroso, M. Cornia, S. Cascianelli, L. Baraldi, R. Cucchiara. “Investigating Bidimensional Downsampling in Vision Transformer Models”. ICIAP 2022. Best Paper Award
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Investigating 2D Max Pooling at different stages

Patch + Pos
Without CLS token
( )
I+ b =
[ B
o — — fa —_ —_ ra — — o — —
c o o | o 5 o| | @ o |o o| |o
or* 9 [ ¥ | A 9 | » > | 2N | 9 [ X | > Y
‘= © O (0] © = © m© © © @ © O © e
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VT2D-1: one 2D Pooling layer in the 2" stage
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Investigating 2D Max Pooling at different stages
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VT2D-1: one 2D Pooling layer in the 3™ stage
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VT2D-1: one 2D Pooling layer in the 4" stage
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VT2D-2: two 2D Pooling layer in the 15t and 3™ stage
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VT2D-4: 2D Pooling layer in all 4 stages
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VT2D-Small: Experimental Results on CIFAR-100

Pooling Kernel Params FLOPs Top-1 Acc. Top-5 Acc.

Stages  Size (M) (G) (%) (%)
VT-S (no pooling) - - 21.70 4.58 75.62 93.01
VT1D-S-4 0,1,2,3 3 21.77 1.39 76.09 93.43
VT2D-S-1 0 3 X 3 21.71 1.15 75.31 92.32
VT2D-S-1 1 3 X 3 21.71 /2.08 76.59 93.16
VT2D-S-1 2 3 x 3 21.71 3.02 76.18 93.35
VT2D-S-1 3 3 X 3 21.7 3.95 75.13 93.34
VT2D-S-2 0,2 3 X 3 2Y.71 0.86 73.31 91.65
VT2D-S-2 0,2 2 X 2 1.73 1.04 74.44 92.02
VT2D-S-4 01,23 3x3/ 21.83 2.28 75.68 92.26
VT2D-S-4 0,1,2,3 2 X 21.91 3.26 77.61 X 93.57
Pooling low level features Pooling high level features
(max pooling in first layers) (max pooling in last layers)
e Large reduction of FLOPs e Limited reduction of\FLOPs
* Large reduction of memory footprint * Limited reduction of memory footprint
e Qutperforms other configurations e Achieves lower accuracy

P. Bruno, R. Amoroso, M. Cornia, S. Cascianelli, L. Baraldi, R. Cucchiara. “Investigating Bidimensional Downsampling in Vision Transformer Models”. ICIAP 2022.



VT2D-Small: Experimental Results on CIFAR-100

Pooling Kernel Params FLOPs Top-1 Acc. Top-5 Acc.

Stages  Size (M) (G) (%) (%)
VT-S (no pooling) - - 21.70  , 4.58 75.62 , 93.01
VT1D-S-4 0,1,2,3 3 21.77 [ 1.39 76.09 | 03.43
VT2D-S-1 0 3 X 3 21.71 1.15 75.31 92.32
VT2D-S-1 1 3 X 3 21.71 2.08 76.59 93.16
In VT2D-S-1 2 3 X 3 21.71 3.02 76.18 93.35
: VT2D-S-1 3 3 X 3 21.71 3.95 75.13 93.34
medio
stat VT2D-S-2 02 3x3 2171 / 0.86 73.31 \ 91.65
virtus VT2D-S-2 0,2 2 X 2 21.73 / 1.04 74.44'\ 92.02
VT2D-S-4 01,23 3x3 218 2.28 75.68 92.26
VT2D-S-4 01,23 2x2 219 3.26 77.61 93.57
7 \
VT2D-S-2 vs. VT-S (no pooling): —81.2% FLOPs —1.2% Accuracy
Pooling with small kernel size Pooling with large kernel size
* Higher accuracy * Lower accuracy
* Higher memory and computational cost * Lower memory and computational cost

P. Bruno, R. Amoroso, M. Cornia, S. Cascianelli, L. Baraldi, R. Cucchiara. “Investigating Bidimensional Downsampling in Vision Transformer Models”. ICIAP 2022.



Performance Comparison: Accuracy vs. FLOPs
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Performance Comparison: Accuracy vs. FLOPs
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Performance Comparison: Accuracy vs. FLOPs
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Performance Comparison: Accuracy vs. FLOPs
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Performance Comparison: Accuracy vs. FLOPs
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Performance Comparison: Accuracy vs. FLOPs
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Many architectures try to find the best of convolutive and attention-based architecture

Many explorations of ViT+CNN...

Input Image Input Image Input Image | CMT'Stem é Lightweight MHSA
A e 5 | Ex3Cowswidd) |/ H X Wi x
Lo MEas ool ! GELU BN | —
, [ L] |4 ! C '
} | } H "' [ k X k DW Conv stride=k ]
! 1
[ Stemn ) Linear Projection (?f Patches ( CMT Stem ) i l l
EREEE N — N [ Linear ] [ Linear ] [ Linear ]
[ Stage 1 ] [class] token [ 2 x 2 Conv stride=2 ] d
Residual Block x 3 o - Stage | \ CMT Block HoxWixG Slxbxg ThxTixg
[
( Stage 2 ] Position Embedding CMT Block x 3 ) ! Toaalp L U ! 1 l l
Residual Block x 4 } ' ocal Perception Unit | |
. I 1
4 Stage 3 N [ Transformer Encoder ) [ 2 X 2 Conv stride=2 ] X 1 ! [ MIiSA ]
i | 3x3 DWConVI J
— l Stage 2 '.' :' H; x W, x G
LU CMT Block x 3 i | N
v [ 2 x 2 Conv stride=2 |} G ’,‘
[ e
BN ReLU l Lt ] f Stage 3 ) [ LayerNorm ]f b Inverted Residual FFN
CMT Block x 16 | L e }
BN . i ’l [
- | LayerNorm | [ 2 x 2 Conv stride=2 | [ Lightweight MHSA ]‘ ' [ 1x1 Conv ]
7 > 4 . oo
| Residual Block x 6 ) MLP Stage 4 i !
CMT Block x 3 ; :
[ Stage 4 ) —-—l L oc < [ LayerNorm ]', | 3%3 DW Conv
Residual Block x 3 | Transformer Block x 12 [ Avg Pool J ' L] ! pe—
1 -
[ Avg Pool J } [class] token [ 1 x 1 Conv ] | | [mverted Residual FF Nl [ 1x1 Conv ]
[ Classifier ] [ Classifier ] [ Classifier ] '1 \‘\ L l L]
(c) CMT-S

(a) ResNet-50

(b) DeiT-S (ViT-S)

1. J. Guo et al “CMT: Convolutional Neural Networks Meet Vision Transformers» CVPR 2022
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CMT

AIma ge™
Table 2. ImageNet Results of CMT. CNNs and transformers with similar accuracy are grouped together for comparison. The propose
. . CMTs consistently outperform other methods with less computational cost.

CMT (CNNs meet transformers) architecture for visual Model o Ace. Top.5 Ace. || Throughpet ¥ Params [ Revolution #FLOPs Rt
CPVT-Ti-GAP [1] 74.9% - - 6M 2242 1.3B 2.6x%
DenseNet-169 [27] 76.2% 93.2% - 14M 2242 3.5B Tx
EfficientNet-B1 [53] 79.1% 94.4% - 7.8M 2402 0.7B 1.2x
EfficientNet-B7 CMT-Ti 79.1% 94.5% 1323.5 9.5M 1602 0.6B 1x

1 B i : .
84 B Swin-B13gs ResNet-50 [16] 76.2% 92.9% - 25.6M 2242 4.1B 2.7%
r CoaT-Lite Mini [67] 78.9% - - 11M 2242 2.0B 1.3%
Swin-B DeiT-B13ga DeiT-S [57] 79.8% - 940.4 22M 2242 4.6B 3.1x%
EfficientNet-B3 [57] 81.6% 95.7% 732.1 12M 3007 1.8B 1.2%
827 o . CMT-XS 81.8% 95.8% 857.4 152M 1927 LB 1x

x DeiT-B 5
S ResNeXt-101-64x4d [64] 80.9% 95.6% - 84M 224 32B 8
5’ Model Topl Acc. #Params # FLOPs T2T-ViT-19 [6+] 81.2% - - 39.0M 224% 8.0B 2x
© g0 - DeiT-Ti [ /] 72.2% 5M 1.3B PVT-M [60] 81.2% - 528.1 44.2M 2242 6.7B 1.7%
2 CPVT-Ti-GAP [0] 74.9% 6M 1.3B Swin-T [36] 81.3% - 755.2 20M 2242 45B 1.1x
Q | CeiT-T [07] 76.4% 5M 1.2B CPVT-S-GAP [1] 81.5% - - 23M 2242 4.6B 1.2%
j [ EfficientNet-B3 [57] | 81.6% 12M 1.8B RegNetY-8GF [14] 81.7% - 591.6 39.2M 2242 3.0B 2%
&, 78 : I Res152 CMT-XS 81.7% 14M 1.5B CeiT-S [07] 82.0% 95.9% - 24.2M 2242 45B 1.1x
o ! PRl RcﬁthfSO [16] 76.2% 26M 4.1B EfficientNet-B4 [57] 82.9% 96.4% 349.4 19M 3802 42B 1x
Ej b ,' R DeiT-S [57] 79.8% 2M 4.6B Twins-SVT-B [4] 83.1% - - 56.0M 2242 83B  2.1x
[ I JRe RegNetY-4GF [44] 80.0% 21IM 4.0B CMT-S 83.5% 96.6% 562.5 25.1M 2242 4.0B 1x

% T T2T-ViT-14 [64] 80.6% 21M 4.8B . - 5
o 76 I X ResNeXt-101 [64] 80.9% 84M 32B VlT—B/lGT;m‘; [ ] 77.9% - 859 55.5M 3842 T7.9B 8.4%
@ ] PVEM [40] 31.2% AAM 6.78 TNT-B [14] 82.8% 96.3% - 65.6M 224 14.1B  1.5x%
E é Swin-T [26] 21.3% 20M 4.5B DeiT-Bags [57] 83.1% - 859 85.8M 384? 55.6B 6.0x
CPVT-S-GAP [5] 21.5% 23M 4.6B CvT-214384 [02] 83.3% - - 31.5M 3847 24.9B 2.7x
74 CeiT-S [07] 82.0% 24M 4.5B Swin-B [10] 83.3% - 88M 2242 278.1 15.4B 1.5x%
—%— CMT -G- PVT CvT-13-NAS [67] 82.29% 18M 4.1B Twins-SVT-L [5] 83.3% - 288.0 99.2M 224:2 14.8B 1.7x
=3 EfficientNet DeiT EfficientNet-B4 [3] 82.9% 19M 42B CeiT-S+384 [07] 83.3% 96.5% - 24.2M 3842 12.9B 1.4x
Swin == ResNet CMT-S 83.5% 25M 4.0B BoTNet-S1-128 [17] 83.5% 96.5% - 75.1M 2562 193B  2.1x
75 | EfficientNetV2-§ [51] 83.9% - - 22M 2242 8.8B 1%
- ' - - - EfficientNet-B6 [57] 84.0% 96.8% 96.9 43M 5282 192B  2.0x
10 20 30 40 50 CMT-B 84.5% 96.9% 285.4 45.7M 2562 938 1x

FLOPs (Billions) : 2
EfficientNet-B7 [52] 84.3% 97.0% 55.1 66M 600 37B 1.9%
(a) ImageNet Accuracy vs. FLOPs CMT-L 84.8% 97.1% 1504  747M 288° 1958 1x

1. J. Guo et al “CMT: Convolutional Neural Networks Meet Vision Transformers» CVPR 2022 60



Encoding multimodality together

Image Encoding

Instruction Encoding

_________________

Many transformer .based encoders .f \ I "Tumright and move forward |
| & ; : barct:;]und the b;d, e:rt?trir the” :
. ) . I athroom and wait there.
Self-attention for single modality i L Lx |
: I I I
. . 3 - ' ' self-attention '
Cross-attention for two modalities i self mg“”“ b 7 I
L 2 1 1 |
i cross-attention ;‘{V; ....... : feed-forward :
. ) e v :
Take-at-home-message: I feed fi“"'a‘"d A o il r
! I
1 ~ U I SN ST SN AEEE 0 ) Ceassssssssssssssssssasssasssssasssased
Multimodality now can be done “easily” . [ O0000d
Think about it! § - FFIFIFT :
VH
self-attention
KV Q | Q KV
v ¥ v v

cross-attention

cross-attention

| ]
v

feed-forward

Multi-Modal Decoding

Landi, L Baraldi, M Cornia, M Corsini, R Cucchiara Multimodal attention networks for
low-level vision-and-language navigation — CVIU Journal , 2021

61


https://scholar.google.it/scholar?oi=bibs&cluster=5808571951754176362&btnI=1&hl=it
https://scholar.google.it/scholar?oi=bibs&cluster=5808571951754176362&btnI=1&hl=it

Perceive-Transform-Act

Instruction Encoding
_________________ . o
r . "Tumrightandmove forward Based on multi-head attention
: : : around the bed, enter the :
| | I bathroom and wait there.” I
' I I I
i | v ' MH(Q, K, V) = Concat(h1, h by ) WO
| self-attention : : self-attention : (Q* 3 ) - Oncat( 1508624« .+, h)
' I I I
: yQ l l Y I .
: cross-attention .EKV; ....... : feed-forward . with:
' I I VL I
: v I I o o) % v
: R R GO x y h; = Attention(QW.*, KWK VW)
! VL : ________ e
1 I-.. m I L R ——
l‘u. et e m e / . QK !
B Rttt el bt EEEEE EE T . Attentlon(QﬁK?V) —softmax [ —— | 'V
: - 899999 : Vi
| VH, |
: self-attention I . .
: K,V i *Q | ka K.V : In self-attention layers, the Keys, Queries, and Values (K, Q, V)
v v
: ross.attention ross.attention : come from the same source sequence.
l ' T [ :
1 1
: feed-forward : After each block, a residual connection, followed by layer
: v : normalization are added.
" a [F K
Multi-Modal Decoding *as (VGSWGI’?/ et. G/, NeurlPS 201 7)
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Instruction:

Walk up the stairs. Turn right at the top
of the stairs and walk along the red
ropes. Walk through the open doorway
straight ahead along the red carpet.
Walk through that hallway into the room
with couches and a marble coffee table.
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® end episode



Instruction:

Walk up the stairs. Turn right at the top
of the stairs and walk along the red
ropes. Walk through the open doorway
straight ahead along the red carpet.
Walk through that hallway into the room L0
with couches and a marble coffee table. \, &
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Instruction:

Walk up the stairs. Turn right at the top
of the stairs and walk along the red
ropes. Walk through the open doorway
straight ahead along the red carpet.
Walk through that hallway into the room
with couches and a marble coffee table.
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Instruction:

Walk up the stairs. Turn right at the top
of the stairs and walk along the red
ropes. Walk through the open doorway
straight ahead along the red carpet.
Walk through that hallway into the room
with couches and a marble coffee table.
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Instruction:

Walk up the stairs. Turn right at the top
of the stairs and walk along the red
ropes. Walk through the open doorway
straight ahead along the red carpet.
Walk through that hallway into the room
with couches and a marble coffee table.
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Instruction:

Walk up the stairs. Turn right at the top
of the stairs and walk along the red
ropes. Walk through the open doorway
straight ahead along the red carpet.
Walk through that hallway into the room

with couches and a marble coffee table. : \§
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PTA is working

Not only simulation

PTA+ explainability

1. R Bigazzi, F Landi, S Cascianelli, L Baraldi, M Cornia, R Cucchiara Focus on impact: indoor exploration with intrinsic motivation IEEE Robotics and Automation
Letters 7 (2), 2985-2992 69
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Embedding visual and language: the CLIP Power

Vision-language models have demonstrated impressive capabilities in challenging tasks such as image captioning,
image generation, and visual question answering. Typically, they consist of three key elements: an image
encoder, a text encoder, and a strategy to fuse information from the two encoders.

A fantastic idea: create a discriminative
embedding by contrastive learning:

- N l: CLIP , a true foundation model.

Vision

Text

Embedd,'ng

70



-.©
Aln’gge“b CLIP

2021: OpenAl CLIP (Contrastive Language—Image Pre-training). The input to CLIP is 400 million image-text pairs
crawled from the internet. It encodes text using Transforms, encodes images using Vision Transformers, and
applies contrastive learning to train the model. Contrastive training matches correct image and text pairs using
cosine similarity

(1) Contrastive pre-training

Pepper the
This is a basic module for many research sussie oo || > gy U1 ] |
* Retrieval T T, | T Ty
 Generative Al (e.g. with Sig U S S e S B A
* Multimodal Discriminative tasks —> L LT LT LT . LTy
o E':'c?)%:r L > I | LT LT, | IyTs I3 T

L Iy INT) | INTy | IyTs Ty

1. https://arxiv.org/abs/2103.00020 71
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9 FLAMINGO
mage

2022: DeepMind group of Visual Language Models; Flamingo.

They have two parts: a vision model that can understand visual scenes, and a language model that helps with
reasoning. The models use their pre-training knowledge to work together.

Flamingo models can also take high-quality images or videos thanks to a Perceiver architecture (that can analyze
a large number of visual input features and produce a small number of visual tokens

Output: text

. Pretrained and frozen - .
Py a very serious cat.

Trained from seraten e Mblesk

: : | . . a-th GATED XATTN-DENSE
The Flamingo-80B, the biggest " ;

Perceiver Perceiver

version with 80 billion parameters, Resampler Resampler © sslMblock &

set a new record in few-shot " 1st GATED XATTN-DENSE
learning for many tasks that T

involve understanding language,
images, and videos.

Processed text

| <image> This is a very cute dog.<image> This is

Interleaved visual/text data
This is a very cute dug.E This is
|

1. https://arxiv.org/abs/2204.14198 2
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#0) Other multimodal FMs

Almage™

*Microsoft FLORENCE (2022) only images

*Microsoft Kosmos-1, a multimodal model that can perceive different modalities, learn context and follow
instructions. Uses a Transformer-based causal language model. Used for generative images, VQ%A

*Google's PaLM-E is an embodied multimodal model: different embodiments, including internet-scale language,
vision, and visual-language domains. The biggest PaLM-E model, PaLM-E-562B, has 562 billion parameters with
new tasks: telling jokes based on an image or doing robot tasks such as perceiving, talking, and planning.

*OpenAl’s GPT-4 is a large multimodal model capable of processing image and text inputs and producing text
outputs. It scored 90th percentile on a simulated bar exam and 99th percentile (with vision) on Biology Olympiad.

* alonglong list.......

*And thus what can we do in such a research???
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https://openai.com/research/gpt-4

#0) What can we do in multimodal research?

Almage™

A lot.

Standing on the shoulder of giants.

Use their models. Solve open challenges. CREATE new challenges.
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3. CHALLENGES IN GENERATIVE Al

Almage™
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Generative Al

After the suitable embedding...

The big journey in Generative al

Embedding

Single-multimodal Generative Tasks D e L EE L PP PRt Other input

} ’ t
|

1

4

[Vision ][Text] tememee- Human Knowledge and Oversight
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#0) Generative ML is not NEW

Almage™

Generative ML has a long story *

1. Gaussian Mixture Models (GMM),
2. Hidden Markov Models (HMM),
3. Latent Dirichlet Allocation (LDA),
4. Boltzmann Machines (BM)......

The prior today at state Kk,
Is the prediction yesterday at state k-1

zt observation of the world at time t ( or frame k) /

... e.g.in tracking:

xt the status of the model at the time t ( or frame k) -
Probabilistic tracking of object in video P 1z,) = ff(xk X P 12 )}i"k—l

With first order Markov assumptions

p(X¢|ze, xi—1) o< p(ze|xe) p(Xe|xi—1)
GENERATIVE ML given x to can generate z

1. Harshvardhan GM A et al “ comprehensive survey and analysis of generative models in machine learning” Computer Science Review 2020 sy



Generative ML

After the Deep Learning era

Generative models

 Autoencoders 7 B

e VAE [Explicit density] [Implicit density]
[ ]
GANS [Tractable density] [Markov chain
* Diffusion Models
[Approximate density] [Directj
. : Diffusion
e ..Overfitting learning ( e.g. NeRF)
-Fully visible GaN models

belief nets 4

|
-NADE GAN
-MADE [Markov chain]
-PixelRNN
l Variational \ \
Boltzmann
Variational machines

autoencoders
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Generative al

From Simple Autoencoders

H H 4 : Reconstructed
To Variational Autoencoders IOPUE - -eoeeoeeneseene deallythoy are ideical, -+ yoe
X~ X
Probabilistic Encoder
q¢(2[x)
Mean m Sampled
1 latent vector
Probabilistic
X > g'». »| Decoder > X’
po(x|2)
o |
Std. dev
An compressed low dimensional

z=p+o0e representation of the input.
e~N(0,1I)

79



Gans arrived

To Generative Adversarial Networks

- A Generative autoencoder enriched in training by a Discriminator Architecture trained with

Adversarial examples by the Generator Generative adversarial networks are based on a game

theoretic scenario in which the generator network must
compete against an adversary. The generator network
directly produces samples. Its adversary, the discriminator
network, attempts to distinguish between samples drawn
from the training data and samples drawn from the
generator.

noise (z)
Generative
Model

(Deep Learning Y Goodfellow, Y. Bengio, A. Courville
2016, the Bible )

Discriminativ
e
Real world

* Objective

real or fake?

Maximi\zeD A/Valieof ﬂtation\‘ fike

* minmax V(D,6) = Ex_paatacn[log DG)] + E.-pznllog (1 — D(G(2)))]

_— f X

Minimize G Distribution of Prob. Of D(real) Distribution of Prob. Of D(fake)
real data generated samples

1. The GAN Loss Y. Goodfellow Nips 2014 80



$0) GAN family

Almage™

Complexity and Mechanisms Quality and Diversity

g Goodfellow et al.(Original GAN) Fully-connected network l 2014 - @
; E [ > ' 5-
A large family A - —— il ] . e %
2 s = L > E
“ o
CO n d It I O n e d G A N g Radford et al.(DCGAN) — Deconvolutional CNN ‘. By 2 o

Autoencoder architecture for
Berthelot et al.(BEGAN) discriminator 2017

Cycle GAN

Progressive growing neural
Karras et al.(PROGAN) S € €

network 2017
e P e
A challenge in GAN
Han Zhang et al. (SAGAN) o Self-Attention CNN 3 2018

Orthogonal regularization to generator.
By using deeper SAGAN with larger

Brock et al. (BigGAN) training batch size. 2019
(== 4 >

How make them general enough

and also perfectly controllable?

? ee discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/349189619
How use them to solve new challen ges: Generative Adversarial Networks in Computer Vision: A Survey
and Taxonomy

Article in ACM Computing Surveys - February 2021

1. https://arxiv.org/pdf/1906.01529.pdf
81
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Almage™ Just an example...

DressCode the largest garment dataset for Vton (thanks to YOOX NET-a-PORTER)

Monomodal generative Al

i Y
< i :
%) ! PS '
2 i ‘———b ) ===oe >
— gl H ' =
By : . Warping Mndule

N+1 channels

Human Parsing Estimation Module

L A

https://ailb-web.ing.unimore.it/dress-code/demo

Davide Morelli, Matteo Fincat, Marcella Cornia Federico Landi Fabio Cesari Rita Cucchiara Dress Code: High-Resolution i-category Virtual Try-On ECCV 2022 82




Diffusion models

Diffusion Models , also known as denoising diffusion models or score-based generative models, demonstrate
surprisingly high sample quality, often outperforming generative adversarial networks, strong mode coverage
and sample diversity.

Diffusion models consist of two processes:

forward diffusion

parametrized reverse
- b
- E g

A small drawback: need learning thousands of diffusion Enormously.

Fixed Forward Diffusion Process

g

Generative Reverse Denoising Process

A big challenge: how to make them more efficient...*

1. M Ning, E Sangineto, A Porrello, S Calderara, R Cucchiara Input Perturbation Reduces Exposure Bias in Diffusion Models ICLR 2023 83
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Diffusion GANS

Generative Denoising
Adversarial  Diffusion
thworks/~ *\ Models

Fast
Sampling

Variational Autoencoders,
Normalizing Flows

https://arxiv.org/pdf/2112.07804.pdf

The Generative Trilemma

Published as a conference paper at ICLR 2022

TACKLING THE GENERATIVE LEARNING TRILEMMA
WITH DENOISING DIFFUSION GANS

Zhisheng Xiao™ Karsten Kreis Arash Vahdat
The University of Chicago NVIDIA NVIDIA
zxiao@uchicago.edu kkreis@nvidia.com avahdat@nvidia.com
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4. CHALLENGES IN CROSS-MODALITIES




Cross-modality Generative Al

PRIN Creative PRIN ( Sapienza, UNIMORE, UniTN)
TP VLMC — FAIR

Many challenges in cross modalities

* |mage-to-text
* Text-to-images
* whatever-to-whatever

*  More whatever —to-whatever

CREATIVE

CRoss-modal understanding and
gEnerATlon of Visual and tExtual content

Input (Sensory) Data Input (Sensory) Data

Specific Pre-Processing
Computer [ Vision ] ﬁﬂ [ Action ] Robotics
Vision

NLP Text
[ ] IG[ ..whatever input ]
Embedding

| ! | ' 4
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Great ideas come from mixing knowledge!

Putting together Embedding and Generative diffusion Models

N o~
atent Vector Ly Lag
fweage €W ", Forwa,g Vectory o 8

{ ( — : / Latent Space ) Conditionina
i  Fe1 : emanti
Ma

va :
| : | Repres )
;‘-eatiOn
Textyz,
r ' | - %fe%
Generated @A_J e Pe(Zeqlze) el = | 'r / - /
! ¢ = |
mage %4 p Rever§ef® iffusiovwStep M
denoiging step cro$sattention  switch  skip connectiory concat 4 u\fcﬂ‘\l
a Networ to o\ > ’ M
?Mopp | DM’ ﬁ\k‘/o-rbgﬂﬂ’ b 6 Pr cencoder with skAp 504‘&
v er Aut for attention ¢

Figure 1: Latent Diffusion Model (Base Diagram:[3], Concept-Map Overlay: Author)

Stable diffusion Models

a Time-to-market of
less than one year

Dall-E
Dall-"2
Midjourney

etc etc

Whati s the problem?

1. R Rombach, A Blattmann, D Lorenz, P Esser, BOmmer “High-resolution image synthesis with latent diffusion models” CVPR 2022 1400 cit in 1 yeae

87



The challenge of prompt based diffusion models

Prompt-based diffusion model

multimodal prompts : image target editing

The biggest challenge is that ............. they work well!.

What about transparency, interpretability etc?

How can we detect fake images?

Should they detect by

a)
b)

C)

syntax, perceptive, probabilistic model of the signature of diffusion?

Semantc, by the lack of pertinency? Entropy, probability of surprise? ( and what about normal anomalies?

Should by defined by human-like decision process?

88
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Spot the fake

'The giraffe is standing alone in the
wilderness.’

a giraffe standing in the middle of a field

"A woman wearing a coat is standing in the snow
near monuments while holding an umbrella.

a woman walking in the snow with an umbrella"

89
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Disentanging semantic and style for Fake detection

Validation Set

Test Set

In-Cluster Overall

In-Cluster Overall

Backbone Dataset Accuracy Accuracy  Accuracy Accuracy
RN50 ImageNet 78.15 95.94 78.62 95.97
ViT-B/32 ImageNet 68.27 91.46 68.06 93.70
CLIP RN50 OpenAl 96.33 99.38 96.72 99.44
CLIP ViT-B/32 OpenAl 95.79 99.27 95.49 99.22
OpenCLIP ViT-B/32 LAION-400M 90.72 98.41 91.57 98.55
OpenCLIP ViT-B/32 LAION-2B 97.93 99.65 98.06 99.66

elsa

European Lighthouse
on Secure and Safe Al

New brave ideas

Cluster

Image
Encoder
) semantics-style
S / disentangling ¢ T
\4 \/
% o %e¢ .
° : [ ] e o 4 ~ _-
]
°e e? 2 e .”:
. ° '.0 s * .
.. ® o o ,” e * PY
°
S * o : ® ° . °® [}

1. R. Amoroso, .D,Morelli L. Baraldi, A.DelBimbo, L.Baraldi, R.Cucchiara. " Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images” under review at ACM

TOMM.
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Deep fake detection performance

Almage™
.08 > ab
ff-'-'.@ AImdgc Deep Fake Detector
Validation Set Test Set iversity of Modena and Reggio Emilia
In-Cluster | Overall In-Cluster Overall _
Backbone Dataset Accuracy |Accuracy | Accuracy Accuracy
Try the Demo

RN50 ImageNet 78.15 95.94 78.62 95.97
ViT-B/32 ImageNet 68.27 91.46 68.06 93.70 Eroresser mages
CLIP RN50 OpenAI WIT 96.33 99.38 96.72 99.44 Available images
CLIP ViT-B/32 OpenAl WIT 95.79 99.27 95.49 99.22 :
OpenCLIP ViT-B/32 LAION-400M 90.72 98.41 91.57 98.55
OpenCLIP ViT-B/32  LAION-2B 97.93 99.65 98.06 99.66

» High accuracy on all detectors ! up to 96.6%
* What patterns do detectors learn? Fredienon Fue
e Style
* Semantic
* Biasin generated data

Prediction: Real

y
elsa

European Lighthouse
on Secure and Safe A/

e Other activities for Fake signature detection

Prediction: Real

1. R. Amoroso, .M.Cornia A.DelBimbo, L.Baraldi, R.Cucchiara. " Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images” under review at ACM TOMM.



80) A next research challenge ICCV 2023

DFAD2023

Workshop and Challenge on DeepFake Analysis and Detection

Organized in conjunction with ICEVY 2023

A Paris, October 2-3, 2023
elsa

European Lighthouse
on Secure and Safe A/

1. Ask Lrenzo Baraldi, Federico Cocchi


https://ailb-web.ing.unimore.it/dfad2023/

Multimodal Garment Designer (MGD)

|ldea: enhancing Stable Diffusion to work with multiple modalities (i.e., text, human pose, garment sketches)
* We extend the denoising U-Net to take additional channels as input.

* This strategy makes it possible to exploit the Stable Diffusion pre-trained weights, giving the model the ability to follow
multimodal prompts while preserving the model’s characteristics.

—— — — — — — — — — — — — —— —— — — — — — — — — ——— ——————— — — — — ——— — — —,

Pre-trained Channels M Additional Channels

| TextY e ‘.
|} Cold shouider P CLIP Text |
| L Blackmididress 1 WSCRTI l }
| — |
zr | | 2r-1 x(T—1) 20
: | =
| | . = Y :
| N . l
| + e — —|> eoe —=
| i Bl |
| " l J
| | S
| |
| |
[ L 1 L | I
a | s 1 18 /

it o\ e i i i e i S Ve G i i i i s St Y i s N (i i il ity i s e Y il Y it i i il

A. Baldrati, D. Morelli, G. Cartella, M. Cornia, M. Bertini, R. Cucchiara “Multimodal Garment Designer: Human-Centric Latent Diffusions Models for Fashion Image
Editing”
Under Review, 2023
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ATmage™ Qualitative Results

SD SDedit MGD (ours)

: " N long sleeved

short red dress

red drape dress
red stretch

jersey knot
4 \ front dress

black sleeveless
gingham combo
gown

long polka dot
dress

long ruffled
gown

blue polo image

blue polo style
shirt

short sleeve
blue polo




Qualitative Results

MGD (ours)
r

short sleeves
logo

tee shirt

white short
~ sleeve t-shirt

black high-rise
trousers

patch pocket
peg trousers

black wide-leg
&  dresspants

blue knee
length

blue navy

blue tailored
knee-length
shorts
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Qualitative Results

MGD (ours)

multicolor
floral-print
t-shirt
blue floral-print
shirt

blue printed
v-neck top

black tie-front
tank

black twisted
tank

black knotted
twist cami

crop tee

high-neck
ribbed-jersey
t-shirt
black
short-sleeve
graphic tee
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ATmage™ Qualitative Results

MGD (ours)

black
long-sleeved

wrap top

black abigail
twist front crop
top

red wow t-shirt
double v tee

women's teev

black plunge
bodysuit

black
long-sleeved
wrap top

black long
sleeve wrap top




An enormus work under the table...

1. Definition of a very large multimodal Dataset

2. Definition of a platform for human-in-the-loop learning ( from noun chunck to sentence
3. Definition a new architecture and a new approach

4. Definition of tests

5. Doing everything with tens of thousands of hours of training ( and large use of CINECA GPUS)

Take at home message: Research needs time, effort, human critical mass... and good ideas/preparation

Take at home message 2: you must enjoy in.

- D. Morelli si Going in Internship to Amazon for 6 Month
- We have contact with Gucci and Armani for improving the model.

- Thanks Phd School in Pisa
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Visual Archetupes Transtormer
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Multi-Head
Self-Attention

|

New research | generative Al for handwritten text generation
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Multi-Head
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CNN Decoder \
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1. Pippi, V., Cascianelli, S., Cucchiara, R. Handwritten Text Generation from Visual Archetypes. CVPR (2023)
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Linear Projection

Visual Archetypes
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And if that isn’t enough...

Neural Nets are powerful tools, but are also data greedy. To obtain better performance, we
need specific training data that allow the model to adapt to new domains

o~ e e

\:\S\}
fid
)
1
_l
J
Y
\!\!I!I
|!\|

T —=Z ) J R ——
R : —
Fine tuning subsample Target dataset i Transcription

Style samples |__,l,\i*,\_\/| Style conditioning

e Ee—I=E~— Er———- | -

-~ —=C Pretraining

- l (——— @ - S

- e ———— |

Y

e [ 1 [ ————— Fine tuning
::__Eff 1 HTG J g | Text line

Handwritten image

[ 5 - —— —— |

Input text Synthetic data

Pippi, V., Cascianelli, S., Kermorvant, C., Cucchiara, R. How to Choose Pretrained Handwriting Recognition Models for Single Writer Fine-Tuning. ICDAR (2023)




Generative Multimodality is the same with genoma

The power of the model is that you can apply everywhere

A generative Model for Protein and mRNA level from DNA encoding for Genoma Amalysis

EU DECIDER PRoject*

@Aimagelab

ATTGCT..CCGATG

Average

o
o |
Attention

Input
e LTI (Embed vPEJ

| KI 1\!‘

: Logits
Latent CELTIHE : ’ - n

I

mRNAhalf- | """ ""-"TTTTooo oo m oo oo s s s e e |

life features | Cat & Linear —-.

____________ AV Output
ATTGCT..CCGATG Proteome &
o E s E E E mRNA level
Input —[ 2| 2|E 8 2 [E g |—
DNA ellsllg= s || Z
g | s g

One-hot encoding

xN mRNA half-
life features
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Towards cross-modality generative

A large research activity: From visual —to-text (image captioning) N ( )
. L VISUAL DATA NATURAL LANGUAGE
S 201511,..3 | feat tract d| del
Ince [ ] Joining visual teature extraCtors andad language maodadels UNDERSTANDING GENERATION
\_ AN J

4 )

..a white shark swims
in the ocean water..

/

Visual feature extractor Language model (e.g. LSTM)

- Mainly supervised (by human annotation)
- Trained by visual and language models

1. Karpathy, A., & Fei-Fei, L. Deep visual-semantic alignments for generating image descriptions. In CVPR 2015.
2. Vinyals, O., Toshev, A., Bengio, S., & Erhan, D. Show and tell: A neural image caption generator. In CVPR 2015.
3. Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K., & Darrell, T. Long-term recurrent convolutional networks for visual
recognition and description. In CVPR 2015. 103




The Image Captioning Journey

h 4

VISUAL ENCODING

1. Non-Attentive
(Global CNN Features)
2. Additive Attention:
* Grid-based
* Region-based
Graph-based Attention
4. Self-Attention:
*  Region-based
* Patch-based
) Image-Text Early Fusion

=

N

Y

TRAINING STRATEGIES

1. Cross Entropy Loss

2. Masked Language Model
3. Reinforcement Learning
4. VL Pre-Training

LANGUAGE MODELS

1. LSTM-based:
* Single-layer
*  Two-layer

2. CNN-based

3. Transformer-based

4. Image-Text Early Fusion
(BERT-like)

A herd of zebras grazing
with a rainbow behind.

T VN Vv o

IEEE TRANSACTIONS ON

PATTERN ANALYSIS AND
MACHINE INTELLIGENCE

ONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

From Show to Tell: A Survey on

leep Learning-based Image Captioning

Matteo Stefanini, Marcella Cornia, Lorenzo Baraldi, Silvia Cascianelli,
Giuseppe Fiameni, and Rita Cucchiara

Abstract—Connecting Vision and Language plays an essential role in Generative Inteligence. For this reason, large research efforts
have been devoted 10 image captioning. /.e. describing images with syntactcally and semantically meaningful sentences. Starting from
2015 the task has generally been addressed with pipelines composed of a visual encoder and a language model 1or lext generation.

During these years, both have evolved y through the

of object regions, attributes, the introduction

of mult-modal connections, fully-attentive approaches, and BERT-lke early-fusion strategies. However, regardiess of the impressive
results, research in image captioning has not reached a conclusive answer yet. This work aims a providing a comprehensive overview
of image captioning approaches, from visual encoding and lext generation 10 iraining strategies, datasets, and evaluation metrics. in
this respect, we quantitatively compare many relevant state-ol-the-art approaches 10 identity the most impactiul technical innovations in
architectures and training strategies. Moreover, many variants of the problem and s open chalenges are discussed. The final goal of
this work is 10 serve as 4 100l for understanding the existing literature and highlighting the future directions 10f & research area where
Computer Vision and Natural Language Processing can find an optimal synergy.

Index Terms—image Captioning. Vision-and-Language. Deep Learning, Survey

1 INTRODUCTION

MAGE captioning is the task of describing the visual con-
tent of an image in natural language, employing a visual

understanding system and a language model capable of
generating meaningful and syntactically correct sentences.
Neuroscience research has clarified the link between human
vision and language generation only in the last few years [1)
Similarly, in Artificial Intelligence, the design of architec-
tures capable of processing images and generating language
is a very recent matter. The goal of these research efforts is
to find the most effective pipeline to process an input image,
represent its content, and transform that into a sequence of
words by generating connections between visual and textual
elements while maintaining the fluency of language.

The early-proposed approaches to image captioning
have entailed description retrieval (2], [3], [4), [5). (6], 7]
or template filling and hand-crafted natural language gen-
eration techniques [8], [9], [10], [11], [12], [13], [14), [15])
While these have been treated in other surveys [16], [17],
(18], image captioning is currently based on the usage
of deep learning-based generative models. In its standard
configuration, the task is an image-to-sequence problem
whose inputs are pixels. These inputs are encoded as one or
multiple feature vectors in the visual encoding step, which
prepares the input for a second generative step, called the
language model. This produces a sequence of words or sub-
words decoded according to a given vocabulary

Manuscript recerved July, 2 vised November, 2021

In these few years, the research community has im-
proved model design considerably: from the first deep
leaming-based proposals adopting Recurrent Neural Net-
works (RNNs) fed with global image descriptors, methods
have been enriched with attentive approaches and rein-
forcement learning up to the breakthroughs of Transformers
and self-attention and single-stream BERT-like approaches.
At the same time, the Computer Vision and Natural Lan-
guage Processing (NLP) communities have addressed the
challenge of building proper evaluation protocols and met-
rics to compare results with human-generated ground-
truths. However, despite the investigation and improve-
ments achieved in these years, image captioning is still far
from being considered a solved task

Several domain-specific proposals and variants of the
task have also been investigated to accommodate for dif-
ferent user needs and descriptions styles. According to [19],
[20), indeed, image captions can be perceptual, when focus-
ing on low-level visual attributes; non-visual, when report-
ing implicit and contextual information; conceptual, when
describing the actual visual content (e.g. visual entities and
their relations). While the latter is commonly recognized
as the target of the image captioning task, this definition
encompasses descriptions focusing on different aspects and
at various levels of detail (¢.g. including attributes or not,
mentioning named entities or high-level concepts only, de-
scribing salient parts only, or also finer details).

With the aim of providing a testament to the journey that
captioning has taken so far, and with that of encouraging
novel ideas, we trace a holistic overview of techniques,
models, and task variants developed in the last years. Fur-
thermore, we review datasets and evaluation metrics and
perform quantitative comparisons of the main approaches.
Finally, we discuss open challenges and future directions.

1. M Stefanini, M Cornia, L Baraldi, S Cascianelli, G Fiameni, R Cucchiara From show to tell: a survey on deep learning-based image captioning |[EEE
Transactions on Pattern Analysis and Machine Intelligence 2022
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Meshed-Memory Transformer

A jump over the shoulder of giants...... let us modeling new ideas

Original Transformer M?2 Transformer

A baseball player is A baseball player is

throwing a ball to throwing a ball to
another player. another player.

’ \ " _________ T _________ ) " --------- T --------- E,
1 1 [}
. Encoder 1 1 Decoder E : [ Encodir \ : ( ]iec‘)del\li j i
: Layer 1 : ! Layer N ! : ayer ! T ayer |
1 1 1 1

1
| ' | T ; - | : ;
' Encoder y ! ! ncoder .
: [ Layer 2 : : T E : [ Layer 2 i : T E
: 1 s Decoder i s : i Decoder ;
i ¢ | 1 Layer 2 ; : | 1 Layer 2 :
! eee l 1 1
| | ¢ D : | : | 1 :
1 1 : 1 { 1 ( Decod :
! [ Encoder d I Decoder ] ! ! J : : k >(o Le:;ere; i
: Layer N ; : Layer 1 : ! : : !
I\\ /:I I\\ y I\\ Memory-Augmented Encoding /1' I\\ Meshed Decoding y

Relationships between image regions are Encoder and decoder layers are
modeled via persistent memory vectors. connected in a mesh-like structure.

Cornia, M., Stefanini, M., Baraldi, L., and Cucchiara, R. Meshed-Memory Transformer for Image Captioning. In CVPR 2020.




Meshed-Memory Transformer

* In our encoder, the set of keys and values is extended with learnable vectors that can encode a priori
information.

* A mesh connectivity is operated through a learnable gating mechanism which modulates the
contribution of each encoder layer during cross attention.
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Cornia, M., Stefanini, M., Baraldi, L., and Cucchiara, R. Meshed-Memory Transformer for Image Captioning. In CVPR 2020.




Meshed-Memory Transformer

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr

c5 c40 c5 c40 cS c40 c5 c40 c5 c40 c5 c40 ¢S c40
cvpr2017 SCST [33] 78.1 93.7 61.9 86.0 47.0 75.9 35.2 645 27.0 355 56.3 70.7 114.7 116.7
cvpr 2018 Up-Down [4] 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 724 117.9 120.5
Iccv2019 RDN [12] 80.2 95.3 - - - - 37.3 69.5 28.1 37.8 574 73.3 121.2 125.2
Eccv 2018 RFNet [15] 80.4 95.0 64.9 89.3 50.1 80.1 38.0 69.2 28.2 372 58.2 73.1 1229 125.1
Eccv 2018 GCN-LSTM [48] 80.8 95.9 65.5 89.3 50.8 80.3 38.7 69.7 28.5 37.6 58.5 734 1253 126.5
cvpr2019 SGAE [40] 81.0 95.3 65.6 89.5 50.7 804 38.5 69.7 28.2 372 58.6 73.6 123.8 126.5
Iccv 2019 ETA [24] 81.2 95.0 65.5 89.0 50.9 804 38.9 70.2 28.6 38.0 58.6 739 122.1 1244
Iccv2019 AoANet [14] 81.0 95.0 65.8 89.6 514 81.3 3904 71.2 29.1 38.5 58.9 745 126.9 129.6

Iccv 2019 GCN-LSTM+HIP [49] 81.6 959 66.2 90.4 51.5 81.6 39.3 71.0 28.8 33.1 59.0 74.1 127.9 130.2

M? Transformer

—> At the beginning of 2020, our model reached the first place in the COCO |leaderboard.

Cornia, M., Stefanini, M., Baraldi, L., and Cucchiara, R. Meshed-Memory Transformer for Image Captioning. In CVPR 2020.




M?2 Transformer: Results

Ground-truth: A truck parked near a tall pile of hay.

| * Transformer: A truck is parked in the grass in a field.

: ' M2 Transformer: A green truck parked next to a pile of hay.

Ground-truth: A cat looking at his reflection in the mirror.
Transformer: A cat sitting in a window sill looking out.

' M? Transformer: A cat looking at its reflection in a mirror.

-

Marcella Cornia, Matteo Stefanini, Lorenzo Baraldi, and Rita Cucchiara. “Meshed-Memory Transformer for Image Captioning." CVPR 2020.



£0) M2 Transformer: Attention Visualizations

Almage™

* A bit of explainability: To visualize the attended image regions, we employ the Integrated Gradients method which
approximates the integral of gradients with respect to the input.

tomatoes
|

- S

Marcella Cornia, Matteo Stefanini, Lorenzo Baraldi, and Rita Cucchiara. “Meshed-Memory Transformer for Image Captioning." CVPR 2020.



Explainability through Captioning
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A new challenge: Controllable Image Captioning?

Early captioning approaches:

A girl is flying
Standad ---> akiteina
* Global image feature vector Captioning Model field.
Attention-based approaches:
 Weakly interpretable (through attention) o
A girl is flying
. N Qp-pown ---> akiteina
ot controllable. Captioning Model G

* We can’t decide which regions get processed
* No control over the generation process.

~N

Detection Sequence . .
Show, control and tell () Controllable Aeir standing
: : G—" | Puoning Model flying kites.
* Controllable via regions ——
Detection Set A girlis flying
 Asequence (ordered) f@ee) | Contollable | e witha
= Captioning Model group of
 Aset (unordered) —— people.

Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. "Show, Control and Tell: A Framework for Generating Grounded and Controllable Captions." CVPR 20189.
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Controllable Captions with LTMs (2019)

Control Signal F--=-=-=-==-=-=-=====-=----—----=-1
2 — | R
® 1
£ YR P .
3 Detection Set : riy1 < R[i], where i = min (Zk:l Gk, N) , gr € {0,1}
f= Sorting
i Network
| 1
I_________________________T _________________ - 1 I I
! Y1 I hi, i ! : :
: Ly | | R
5! hi_->{ Attention LSTM @} >n! ! ! !
2 7 - ) i
%: rdaon h; Tk : -ty + Hy Oy Hy CFHy ) )y OE
I aptive unk- ;
Qo = <« T
gi l Attention Shifting Gate . Vi | : | : | : i [
2 ,Lct T ! | 1 I 1 I 1 I I i
LU : \” ——————I I . . 1 I I 1 I I I 1 1
| h2 —->[ Language LSTM @ 1> h?2 : ‘ 'L : : 'L : VL : 'L : ; i : ‘L : 'L : ‘L
LTS guag 1> ‘ a 1 dog. sittingi  on | a ysidewalk next: to | a 1 bike
I
l v ¥ b v v v v v v v v v
R Y G1=0 92=193=0g,=0 g5=0 g5=1 gr=0 gs=0 g9 =0

* Language model takes as input a sequence of regions

* Switches between one region and the next one via a learned chunk-shifting gate

*  When it’s done with the generation of chunk, it moves to the next region in the sequence

Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. "Show, Control and Tell: A Framework for Generating Grounded and Controllable Captions." CVPR 20189.
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Generating Controllable Captions

Control Signal F--=-=-=-==-=-=-=====-=----—----=-1
2 — | R
© 1
£ YR P .
3 Detection Set : riy1 < R[i], where i = min (Zk:l Gk, N) , gr € {0,1}
f= Sorting
i Network
| 1
= S Ll ! !
: Y1 I hi, ! : :
i 2R 2R ! : i
1 1 3
<! ht_]—{ Attention LSTM @]—-)h ! ;
3 J ] 1
= | po— hy p— ) O COF) OF) O O O
1 aptive unk-
Qo = <« T
3 i l Attention Shifting Gate ' | : | : i [
& 'L(;t T 1 1 [ I [ 1
o | Y T 'L : 'L : | : ,L ! ,L : ,l,
g2 ! 2
:ht—1">[ Language LSTM @ I')ht on 1 a isidewalk nexti to . a 1 bike
I
i v v , 1% v v v ¥ v v v
(R . AN o ‘ 9B 93=09:=0 g5=0 g6 =1 gr=0 ggs=0 g9 =0

* Language model takes as input a sequence of regions

 Switches between one region and the next one via a learned chunk-shifting gate

*  When it’s done with the generation of chunk, it moves to the next region in the sequence

Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. "Show, Control and Tell: A Framework for Generating Grounded and Controllable Captions." CVPR 20189.
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Generating Controllable Captions

° Control Signal F--=-=-=-==-=-=-=====-=----—----=-1
® R
I
= v ¢
5 Detection Set _ ri41 + R[i], where i = min (Zk:l gk, N) , gr € {0,1}
£ Sorting
i Network

I
I
i Y1 I hi, :
! 2R 2R :
_ i hi - Attention LSTM @} >n !
g
1
s = ¢t_ ! Ch¢k T+ F O O O
l aptive unk-
oh T = <« T
gi : Attention Shifting Gate ‘ m{ i : I L]
tclﬂ | lct T | ! | 1 1
g | ¥ “TTTTA ) : | : ) ! ) : )
I 2 ! 2
] ht-1"’[ Language LSTM @ I')ht a isidewallf nexti to 1 a1 bike
I
i v v . v v v v v
O L. LA g1=0 g 1 gr=09gs=0 go=0

* Language model takes as input a sequence of regions

 Switches between one region and the next one via a learned chunk-shifting gate

*  When it’s done with the generation of chunk, it moves to the next region in the sequence

Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. "Show, Control and Tell: A Framework for Generating Grounded and Controllable Captions." CVPR 20189.
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Generating Controllable Captions

Control Signal [------------=-=--=--------
g — 'R
® 1
£ YR P .
3 Detection Set - riy1 < R[i], where i = min (Zk:l Gk, N) , gr € {0,1}
< Sorting
i Network
D N by T
! Ye—1 I h;_, : !
- Ly | :
S i hle Attention LSTM @} >n! !
3 v - 1 i
%: rdaon h; Tk : +y CFy ) g ) CF y
I aptive unk- ;
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8 i : Attention Shifting Gate . w4 i : i v LY [ ] 1
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% : l(.g |’ - : ’ 1 I | | | I
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I
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* Language model takes as input a sequence of regions

 Switches between one region and the next one via a learned chunk-shifting gate

*  When it’s done with the generation of chunk, it moves to the next region in the sequence

Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. "Show, Control and Tell: A Framework for Generating Grounded and Controllable Captions." CVPR 20189.
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Controllable Captions with transFormers (2021)

Now a similar approach with Transformer

Control Signal

70 1 79
So(t) Tegporal-depepdent
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i . I | I a9 e e 2 (e (e (e (e (&) &)
inner ! yontons || s . AR AR DA
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|

Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. "Fully-Attentive Iterative Networks for Region-Controlled Image and Video Captioning." Under Review.



#0) NEW COCO Entities Dataset

Almage™

For training and evaluation, we collect COCO-Entities
- more than 120,000 images

e COCO with noun chunks associated to regions

A young man walking past A man walks past a red fire A manin
a red fire hydrant. hydrant on the sidewalk. walking past a fire hydrant.

* Semi-automatically annotated

A young girl is sitting down A woman sitting at a table A woman and a dog that is
with her dog. with a dog eating cake. eating from

Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. "Show, Control and Tell: A Framework for Generating Grounded and Controllable Captions." CVPR 20189.
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Controllability via a sequence of regions

Controllable Captioning Results

Cross-Entropy Loss

CIDEr Optimization

CIDEr + NW Optimization

Method B4 M R C S NW B-4 M R C S NW B4 M R C S NW
Neural Baby Talk 12.9 19.2 40.4 120.2 29.5 0.305 - - - - - - - - - - - -
Up-Down 12.9 19.3 40.0 119.9 29.3 0.296 14.2 20.0 42.1 133.9 30.0 0.310 - - - - - -
M? Transformer 13.9 20.2 41.5 130.3 31.0 0.314 16.5 22.1 44.5 154.5 33.4 0.345 - - - - - -
Oscar 14.0 21.9 42.0 1349 31.8 0.301 16.5 22.1 45.4 155.8 344 0.334 - - - - - -
LSTM-based

Controllable Up-Down 17.3 23.0 46.7 161.0 39.1 0.396 17.4 22,9 47.1 168.5 39.0 0.397 17.9 23.6 482 171.3 40.7 0.443

Show, Control and Tell | 20.9 24.4 52.5 193.0 45.3 0.508 22.5 25.6 55.1 210.1 48.1 0.615 22.3 25.6 55.3 209.7 48.5 0.649
Transformer-based

Controllable Transformer 18.9 24.3 479 1775 41.1 0.431 20.2 25.0 49.6 194.0 42.8 0.464 20.3 25.0 49.7 194.0 42.8 0.468

Show, Control and Tell | 25.0 27.4 56.2 225.0 49.4 0.623 26.1 28.0 57.8 238.6 50.2 0.671 | 26.5 28.0 58.1 243.4 51.1 0.683

Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. "Fully-Attentive Iterative Networks for Region-Controlled Image and Video Captioning." Under Review.
Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. "Show, Control and Tell: A Framework for Generating Grounded and Controllable Captions." CVPR 20189.



Controllability via a Sequence of Regions

A

A man sitting at a desk with a A man sitting at a desk with a
computer and a man holding computer.

Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. "Show, Control and Tell: A Framework for Generating Grounded and Controllable Captions." CVPR 20189.



Controllability via a Sequence of Regions

A giraffe standing in front of 2 A zebra standing next to a
zebra in a field. giraffe in a field.

Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. "Show, Control and Tell: A Framework for Generating Grounded and Controllable Captions." CVPR 20189.



Controllability via a Set of Regions

Almage™

Results when controlling with a set of regions

A dog holding a frisbee in its A dog standing in the grass with
mouth. a frisbee in its mouth.

Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. "Show, Control and Tell: A Framework for Generating Grounded and Controllable Captions." CVPR 20189.



Controllability via a Set of Regions

Results when controlling with a set of regions

A man in a black jacket skiing
down a hill. covered slope.

Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. "Show, Control and Tell: A Framework for Generating Grounded and Controllable Captions." CVPR 20189.



5. CHALLENGES IN MULTIMODAL FOUNDATION MODELS
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A future challenge 1 : the measure

Large scale multimodal models revolutionized CV; NLP, Generative al etc

Many images, text etc can be generated

HOW CAN WE EVALUATE THE GOODNESS OF GENERATIVE Al?

124



Captioning, text description, VQA...

but how to evaluate them?
Some Linguistic Measures
Some Captioning Measures (CiDer)
Some Captioning Measues based on FM (Clip-S)

Human-Feedback

Now, focus on:

New evaluation metrics (CVPR 2023)

The problem of EVALUATION

What is better??

]

A man in a black jacket skiing

down a hill.

A man on skis down a show

covered slope.

What is better??

Standard Captioner:
A group of people riding
skateboards in a field.

Universal Captioner:
A group of people riding
segways in a field.

Standard Captioner:
A tall building sitting in
the middle of a body of
water.

Universal Captioner:
An aerial view of the
Burj Al Arab in Dubai.

Standard Captioner:

A woman with blonde
hair is posing for a
picture.

Universal Captioner:

A picture of Marilyn
Monroe with a red

Iinctinl,



#0) MeasuRes

Almage™

Is so difficult to measure captions

o]

o]

m

3

8

Q

]
e
&
g —
<«

and often GT captions (e.g. in Coco) have no sense.. .
Existing metrics for image-text correspondence are either only S I |
based on (few) human references or multi-modal embeddings LT

trained on noisy data. [N Y R gy

A silver bicycle is parked in METEOR CIDEr CLIP-S
a living room. 231 68.6 0.686

o % £

'Asffverbfcyde leaning up | METEOR CIDEr CLIP-S |
against a kitchen table and
32.4 63.7 0.637

chairs.
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PAC-S a NEW MEASURE

PAC-S: A new metric for evaluating Image-text correspondence

The metric outperforms previous reference-free and reference-based metrics in terms of correlation with human
judgment.

F

A yellow bus passes through || METEOR CIDEr CLIP-S || PAC-S
an intersection. 42,7 167.0 0.816 0.836

AN

METEOR CIDEr CLIP-S PAC-S
33.9 94.5 0.813 0.844

=~ | A yellow bus is traveling
down a city street just past
an intersection.

S. Sarto, M. Barraco, M. Cornia, L. Baraldi, R. Cucchiara "Positive-Augmented Constrastive Learning for Image and Video Captioning S élﬁléé'
Evaluation«, CVPR 2023 it
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CREATIVE

CRoss-modal understanding and
gEnerATlon of Visual and tExtual content

Positive-Augmented Contrastive Learning

= Dual-encoder architecture
comparing the visual and textual

Real y  Generated . . . . . .
—— inputs via cosine similarity
An electric train running on A blue and white train
a track near a mountain traveling down train tracks.

rafjge.

= Usage of synthetic generators of
Text € mmmmmmmm e o > Text .
o both visual and textual data
(Stable Diffusion! and BLIP?,
respectively)

Text
Generator

k
!

OOOSE
OSSO W

Image
Encoder
I ; 1
HEEN
CIRNEIE]
REEIE E
HEEN

T

A~
1o Notation
* B Vl — .... :, . real images positive real pairs \: . .
> I | o similarties - Fine-tuning on human annotated data
o S o B |:| DDDD : D generated D positive real-gen pairs similaritie,J' . . R
L £5 g8 ----- iz P T teme | by taking into account contrastive
=3 =& docog | 01 sonrmetemon relationship between real and

"""""""""""""""""" generated matching image-caption
pairs.

1. Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-resolution image synthesis with latent diffusion models. In CVPR, 2022.
2. Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation. In ICML, 2022.



CREATIVE

S mauioa Image Captioning Correlation with Human Judgment

gEnerATlon of Visual and tExtual content

PAC score achieves the best correlation with human judgment and accuracy on all the considered image
datasets, demonstrating its effectiveness compared to previously proposed metrics.

Flickr8k-Expert Flickr8k-CF Composite Pascal-50S
Kendall 7, Kendall 7. Kendall 7, Kendall 7. Kendall 7, Kendall 7. HC HI HM MM Mean
BLEU- 322 323 17.9 23 BLEU-1 29,0 313 length 517 523 636 496 543
BLEU-4 0.6 308 16.9 8.7 BLEU-4 28.3 306 BLEU-1 646 952 912 607 719
ROUGE 31.1 32.3 19.9 103
‘ ‘ : : ROUGE 30.0 324 BLEU-4 603 93.1 857  57.0 74.0
METEOR 41.5 41.8 22.2 11.5 . : ROUGE 63.9 95.0 923 60.9 780
CIDEr 43.6 43.9 24.6 127 METEOR 209 389 METEOR 660 977 940 666 81.1
SPICE 51.7 44.9 24.4 12.0 CIDEr 34.9 37.7 CIDE s 979 907 659 201
BERTS - 302 23 - SPICE 38.8 40.3 ! : : : : :
LEIC 16.6 R 29.5 ] BERT.S i 301 BERT-S 654 962 933 614 79.1
BERT-S++ ‘ 46.7 ‘ : BERT-S++ 65.4 981 964 603 80.1
- - . - - BERT-S++ - 449
e - S A (O O
: ViLBERT, . . 1 75 79.
TIGEr - 49.3 - - ViLBERTScore - 524 ‘ core
ViLBERTScore - 50.1 - - FAIEr 59.7 99.9 92.7 73.4 81.4
’ FAIEr - 514
MID - 54.9 37.3 _ MID 67.0 99.7 974 76.8 85.2
CLIP-S 511 51.2 34.4 177 CLIP-S ‘S‘i-g ggg CLIP-S 559 993 965 720 80.9
e 53.9 54.3 36.0 18.6 PAC-S . . e 60.6 993 9.9 729 82.4
(+2.8) (+3.1) (+1.6) (+0.9) (+1.7) (+1.9) (+4.7) (+0.0) (+04) (+0.9) (+1.5)
RefCLIP-S 52.6 53.0 36.4 18.8 RefCLIP-S 51.2 55.4 RefCLIP-S 649 995 955 733 83.3
55.4 55.8 37.6 19.5 52.8 57.1 682 995 956 759 84.8
S (+2.8) (+2.8) (+1.2) (+0.7) R (+1.6) (+1.7) RefPAC-S (+3.3) (+0.0) (+0.1) (+2.6) (+1.5)

Micah Hodosh, Peter Young, and Julia Hockenmaier. Framing image description as a ranking task: Data, models and evaluation metrics. JAIR, 47:853—-899, 2013
Somak Aditya, Yezhou Yang, Chitta Baral, Cornelia Fermuller, and Yiannis Aloimonos. From Images to Sentences through Scene Description Graphs using Commonsense Reasoning and Knowledge

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. CIDEr: Consensus-based Image Description Evaluation. In CVPR, 2015



examples

: CLIP-S PAC-S
A person tries to catch a ball on a
beach. 0.781 0.798
: . CLIP-S PAC-S
A person tries to catch a frishee on a
beach. 0.759 0.828
A baby horse is seen standing in s EACs
between another elephant's legs. 0.782 0.793
A baby elephant is seen standing in CLES il
between another elephant'’s legs. 0.769 0.820
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Visual Concept evaluation by querying

Idea: A very brave challenge: emulating humans in making questions,,, and finding answers..

Prompt

[l §

' : Blind Questions Refinement Questions 4—‘
b |_l l—l

Stepwise

g VOA Model ‘ O Reasoning Model
. 2 . | “
reasoning Reasoning Model 4—{ Captioner l I ‘
: Answers

Blind Questions ; Score Motivation

A
l‘

Figure 2. Visual Concept Evaluation Pipeline

Ask Lorenzo Baraldi: UNIMORE & UNITN
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A future challenge : unlearning pre-trained models

Unlearning: away to catastrophically forget something the user ask to forget.

Something not possible for humans

Useful for fairness, privacy, trustworthy and for PERSONALIZATION

We could need PLASTICITY

We could need UNLEARNING

Please Robot give me my BAG!
Similar to extinction learning or inhibitory learning in

humans (Kia Nobre)
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Let's suppose the
robot can
reCOgniZe
different classes
of objects

( classification,
detection, search

and retrieval) Gym-bag

Unlearning as hyper personalization

Hand-bag

classes

School-bag

Shop-bag




Unlearning as hyper personalization

Almage™

“My bag!

classes




After Unlearning

L This is your hand-bag

‘ This is your gym-bag

This is NOT yours

This is NOT yours

How can a system do it?



Almage™ Filteri Ng
(I
\_ i \; EL\ This is your hand-bag
‘ This is your gym-bag 1) Filter the output

This is NOT yours

| recognize that this is a work-bag
ﬁ This is NOT yours but I do not tell you....




Unlearning

Almage™

(5

: i g ‘!\ This is your hand-bag

‘ This is NOT yours 2) Unlearn a single class

This is NOT yours

? 1 do not recognize it as a
known object

. ( e.g. | confuse it with another
This is your work-bag class

possibly with a low confidence)



Multiple Class Unlearning

Almage™

(%

\_ i \; EL\ This is your hand-bag

& 2) Unlearn more cl
‘ This is NOT yours ) Unlea OFe Classes

This is NOT yours é

? 1 do not recognize them as a known

object
This is your work-bag (e.qg.l cpnfus_e the with anqther class,
possibly with a low confidence)




Unlearning in Vision

Unlearning in vision: two main families

1. One aims at making the model unlearn by destroying its performance on
the subject of the unlearning, and splitting its probability among all the

other classes? —
s o mts o o imC
* e.g. learning a noise matrix to deteriorate the model’'s performances)
(a)
weights are fixed -~
Dc£\ E
N ]£+A|w,w,m N c ] <—_> c _,
P B

Source Model

(b)
/ [ J Unlearned
dat Selective Impair Selective Repair Model
Forget Data HpEAs “\
Class N e
Error Maximizing Noise Generation -
(c)

2. Another realizes unlearning by removing some classes and shifting their
probabilities to the second most likely?

[1] A. K. Tarun, et al. «Fast Yet Effective Machine Unlearning». arXiv preprint arXiv:2111.08947 (2021).
[2] S. Poppi, S. Sarto, M. Cornia, L. Baraldi, R. Cucchiara. «Multi-Class Explainable Unlearning for Image Classification via Weight Filtering», under review



#0) Unlearning Pre-trained models

Almage™

No retaining data available?
e astrategy to realize unlearning without either accessing the retaining data or creating hand-crafted proxies

* |t only requires access to some images of the classes that are to be unlearned

e |t does not even require that those images come from the original dataset: we provide experiments with
random images, downloaded from the web

Standard Unlearning User Unlearning Request Low-Rank Unleaming

i a Model with Low-Rank ]_ -3 Unlearned ]
LR = A

Retaining Data

52 Adapters Model

User Unlearning Request

i ﬁ 5 . Unlearned
—» _ L —
g F‘J’ A Pre-Trained Model > Model

(-]

Low-Rank
Adapters

no need to access pre-training dataset J

no need to fine-tune all weights J

S. Poppi, S. Sarto, M. Cornia, L. Baraldi, R. Cucchiara. «Low-Rank Class-wise Unlearning in Vision Transformers without Retaining Data», under review



9 The Model
mage

unlearning architecture We inject a trainable low-rank decomposition into the linear layer producing the query, key
and value vectors

x L
r \ e N _ ) Q () N\ ()
s ez s . 0.
2| | [ | | A|[B]]. ]| o
Eo- 2 B — & {2 DN E 2D -
oo W i v E: w
m, < 7 , S
. y . ) ////;[ﬁ}\\\\%/ - ) ;%2
g e the loss function is composed of two
Untraining Ph :
, TN T eee terms: unlearning factor and a
W Pre-Trained Weights ?E{fé regU|arizer
N ) d * the solution is extremely fast, given the
e DY — . . .
Low-Rank Adapter : little number of required untraining
W ] . B Reret(00; 0) samples
\. & \\|/
update ‘C(Df) (907 9) — T )\HV6C<B)H1

Ex,yEDf LCE(QG’ (X)7 Y 9)

S. Poppi, S. Sarto, M. Cornia, L. Baraldi, R. Cucchiara. «Low-Rank Class-wise Unlearning in Vision Transformers without Retaining Data», under review
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Our unlearning architecture in Test Phase

xL
- \ - N — Q () —

sl &| & 2 z L(Dy; 00;0))
IE o % K |: ) 4 O o ) 4

EQ < —>—> LLI =Z »P-Ls < > »P >

2 Al 5 = 1= —
2 [z & |1 & =

L i % > < -l

— —

Test Phase
( 2\

During the evaluation, W can be made

inaccessible by just collapsing the W, Pre-Trained
decomposition, back into a single parameter 0% %)
matrix. [Low-Rank Adapter\

W'« Wy + BA, f(x) =xW' +b. ~
"]
r
\ J

S. Poppi, S. Sarto, M. Cornia, L. Baraldi, R. Cucchiara. «Low-Rank Class-wise Unlearning in Vision Transformers without Retaining Data», under review




Ah;lage Results

Experimental results on CIFAR-10 and CIFAR-20

« We achieve comparable results to approaches using the retaining data

« The use of LoRa layer, combined with our loss, performs better than other baselines,
In the same setting

ViT-T ViT-§ Swin-$
Dy Acer [%] T Accy [%] ]  Acer [%] T Accp [%] ]  Acer [%] T Accy [%] |
Original model - 82.0 82.0 84.0 84.0 89.8 89.8
Retrained model v 80.9 0.0 85.4 0.0 88.8 0.0
Fine-tuned model v 80.2 7.9 81.3 3.0 85.0 23
Random labels [17] v 83.0 0.0 85.1 0.0 88.9 0.0
Negative gradient [14] v 84.4 0.0 85.8 0.0 88.9 0.0
CIFAR-10 Negative gradient w/ L; regularization X 80.8 0.3 82.2 1.0 85.4 2.1
Negative gradient w/ low-rank X 80.9 0.1 82.5 0.9 85.4 1.8
Bounded loss w/ L; regularization X 81.2 0.1 82.3 0.8 85.5 1.4
Bounded loss w/ low-rank (Ours) X 81.9 0.1 83.5 0.8 86.0 0.8
Original model - 67.0 67.0 71.9 71.9 74.4 74.4
Retrained model v 64.2 0.0 69.7 0.0 72.7 0.0
Fine-tuned model v 64.5 8.2 67.2 8.6 68.3 4.6
Random labels [17] v 66.2 0.0 70.8 0.0 73.2 0.0
Negative gradient [14] v 67.6 0.0 71.4 0.0 72.2 0.0
CIFAR-20 Negative gradient w/ L; regularization X 62.9 1.1 68.0 1.2 67.9 3.8
Negative gradient w/ low-rank X 63.0 1.0 67.8 1.0 67.9 3.8
Bounded loss w/ Ly regularization X 63.1 1.2 67.9 0.8 68.0 3.7
Bounded loss w/ low-rank (Ours) X 63.5 0.9 68.2 0.8 68.2 34

S. Poppi, S. Sarto, M. Cornia, L. Baraldi, R. Cucchiara. «Low-Rank Class-wise Unlearning in Vision Transformers without Retaining Data», under review



Mmage Results

Experimental results on CIFAR-10 and CIFAR-20

Original NegGrad[1] OURS

Visualizing the
embedding space
with the T-SNE
algorithm,

The low-rank
unlearning brings the
embedding of
unlearned samples
toward other classes

[1] A. Golatkar, A. Achille, and S. Soatto. 2020. «Eternal sunshine of the spotless net: Selective forgetting in deep networks». In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition.

S. Poppi, S. Sarto, M. Cornia, L. Baraldi, R. Cucchiara. «Low-Rank Class-wise Unlearning in Vision Transformers without Retaining Data», under review
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$0) Conclusions

Almage™

*  Computer Vision and Pattern Recognition; Natural Language Processing and Computational Linguistics;
Discriminative and Generative Machine Learning are converging in single multimodal models

 Multimodal models could be large scale foundation model (or not) or adapted, distilled and created with
modular elements

* Now research in cross-modal and multimodal generz Al is absol y the challenge of today: many
applications (e g industry, fashion,media...)

* Many challenges in all sub-tasks of the unifying model

 Many challenges for the future ( evaluating as human can do, changing the pre-trained hypothesis, hyper-
personalization..just to same someone)

And it is not enough...robustness, accuracy, human oversight, are not enough to cope with trustworthiness..
we need an ethic-by-design-Al .



$0) Conclusions
Almage

Get on the shoulders of giants...

and jump far!
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