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Classical algorithms for saliency prediction focused on
identifying the fixation points that human viewer would
focus on at first glance.

CONVENTIONAL SALIENCY

• Extraction of hand-crafted
and multi-scale features:

• Lower-level features

• Higher-level concepts

• faces, people, text,
horizon, etc.

• Difficult to combine all these
factors.

DEEP SALIENCY

• Fully Convolutional networks directly
predict saliency maps given by a non-
linear combination of high level
feature maps extracted from the last
convolutional layer.
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Feature Extraction and Encoding Network

• Fully Convolutional net with 13 layers, inspired by VGG-16.

• To limit rescaling, the last pooling stage is removed and the
stride of the last but one pooling layer is decreased.

• We take feature maps at three different locations of the FCN,
and concatenate them to form a tensor with 1280 channels.

• A 3 x 3 convolutional layer learns 64 saliency-specific feature
maps, then a 1 x 1 convolution learns to weight each map to

produce a temporary saliency prediction.

Learned Prior

• We let the network learn its own custom prior.

• A coarse mask, which has a much smaller size of the saliency
map, is learned

• Then it is upsampled and applied to the predicted saliency map
with pixel-wise multiplication.

Loss Function

Three objectives:

• Predictions should be pixel-wise similar to ground truth.

• Predicted maps should be invariant to their maximum.

• The loss should give the same importance to high and low GT
values.

𝑦𝑖 are ground truth values and 𝜙 𝑥𝑖 are predicted values.

𝐿2 regularization term added to penalize the deviation of the
prior mask 𝑈 form its initial value.
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Experimental results

RESULTS ON SALICON DATASET

RESULTS ON MIT300 DATASET

Image GT Ours Shallow [1] [2] [4]Deep [1]

• We evaluate our model on the SALICON dataset and
on the MIT300 benchmark.

• Our solution outperforms all competitors on SALICON
dataset, even the most recent approach published in
CVPR 2016, by a big margin on all considered metrics.


