

Problem statement

Classical algorithms for saliency prediction focused on identifying the fixation points that human viewer would focus on at first glance.

CONVENTIONAL SALIENCY

- Extraction of hand-crafted and multi-scale features:
 - Lower-level features
 - Higher-level concepts
 - faces, people, text, horizon, etc.
- Difficult to combine all these factors.

DEEP SALIENCY

• Fully Convolutional networks directly predict saliency maps given by a nonlinear combination of high level feature maps extracted from the last convolutional layer.

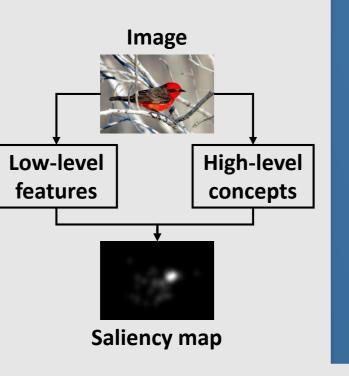


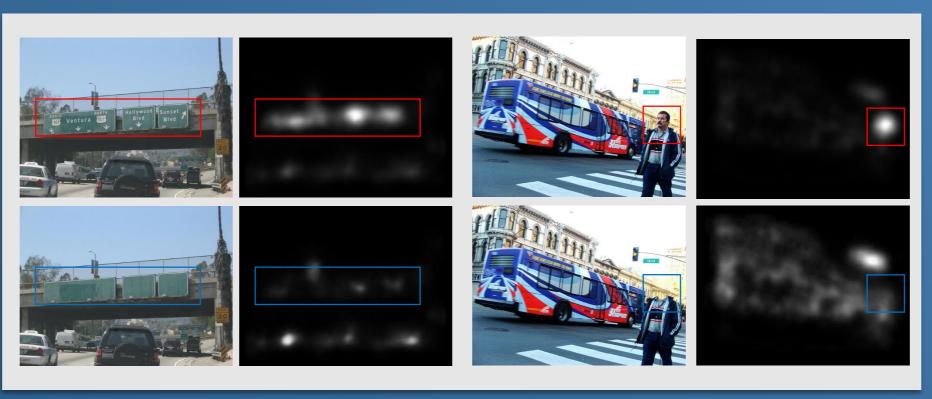
Image Convolutional Neural Network

Saliency map

Input image

- Predictions should be pixel-wise similar to ground truth.
- The loss should give the same importance to high and low GT values.

 y_i are ground truth values and $\phi(x_i)$ are predicted values. L_2 regularization term added to penalize the deviation of the prior mask U form its initial value.



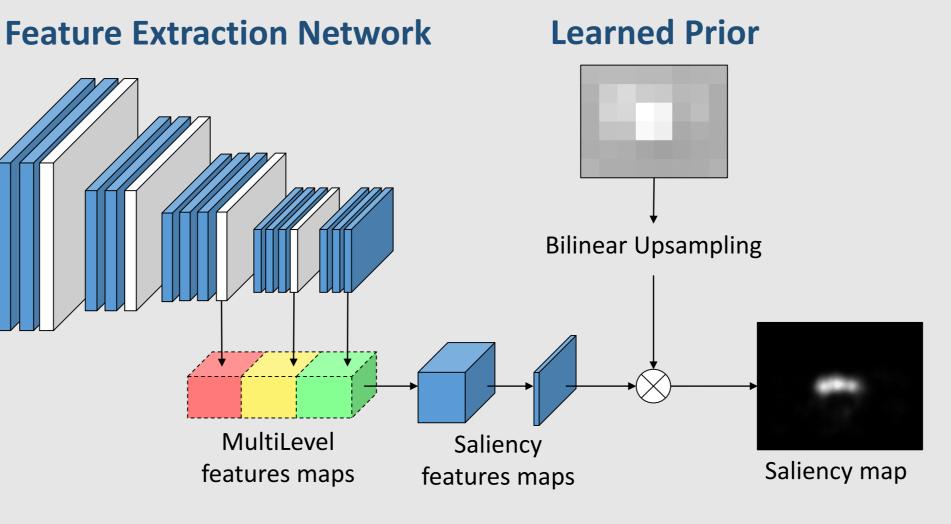
Feature Extraction and Encoding Network

- Fully Convolutional net with 13 layers, inspired by VGG-16.
- To limit rescaling, the last pooling stage is removed and the stride of the last but one pooling layer is decreased.
- We take feature maps at three different locations of the FCN, and concatenate them to form a tensor with 1280 channels.
- A 3 x 3 convolutional layer learns 64 saliency-specific feature maps, then a 1 x 1 convolution learns to weight each map to produce a temporary saliency prediction.

Learned Prior

- We let the network learn its own custom prior.
- A coarse mask, which has a much smaller size of the saliency map, is learned
- Then it is upsampled and applied to the predicted saliency map with pixel-wise multiplication.

Deep Learning for Saliency Prediction in Images Marcella Cornia, University of Modena and Reggio Emilia Tutor: Prof. Rita Cucchiara



Encoding Network

Loss Function

Three objectives:

• Predicted maps should be invariant to their maximum.

$$L(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} \left\| \frac{\frac{\phi(\mathbf{x}_i)}{\max \phi(\mathbf{x}_i)} - \mathbf{y}_i}{\alpha - \mathbf{y}_i} \right\|^2 + \lambda \|\mathbf{1} - U\|^2$$

[1] Pan, et al. "Shallow and Deep Convolutional Networks for Saliency Prediction." CVPR, 2016. [2] Riche, Nicolas, et al. "Rare2012: A multi-scale rarity-based saliency detection with its comparative statistical analysis." SPIC, 2013.

[3] Zhang, Jianming, and Stan Sclaroff. "Saliency detection: A boolean map approach." ICCV, 2013.

[4] Harel, Jonathan, Christof Koch, and Pietro Perona. "Graph-based visual saliency." ANIPS, 2006. [5] Itti, Laurent, Christof Koch, and Ernst Niebur. "A model of saliency-based visual attention for rapid scene analysis." IEEE TPAMI, 1998. [6] Kruthiventi, et al. "DeepFix: A Fully Convolutional Neural Network for predicting Human Eye Fixations." arXiv:1510.02927, 2015 [7] Huang, Xun, et al. "SALICON: Reducing the Semantic Gap in Saliency Prediction by Adapting Deep Neural Networks." ICCV, 2015 [8] Kümmerer, et al. "Deep Gaze I: Boosting saliency prediction with feature maps trained on ImageNet." *arXiv:1411.1045*, 2014. [9] Liu, Nian, et al. "Predicting eye fixations using convolutional neural networks." CVPR, 2015.

Experimental results

Our meth Deep Conv Shallow Co WHU IIP Rare 2012 Xidian (LS Baseline: I Baseline: (Baseline: I

	Sim	CC	sAUC	AUC	NSS	EMD
Infinite humans	1.00	1.00	0.80	0.91	3.18	0.00
DeepFix [6]	0.67	0.78	0.71	0.87	2.26	2.04
SALICON [7]	0.60	0.74	0.74	0.87	2.12	2.62
Our method	0.60	0.69	0.71	0.85	2.07	2.53
Deep Convnet(CVPR16) [1]	0.52	0.58	0.69	0.83	1.51	3.31
BMS [3]	0.51	0.55	0.65	0.83	1.41	3.35
Deep Gaze 2 [8]	0.46	0.51	0.76	0.87	1.29	4.00
Mr-CNN [9]	0.48	0.48	0.69	0.79	1.37	3.71
Shallow Convnet (CVPR16) [1]	0.46	0.53	0.64	0.80	1.47	3.99
GBVS [4]	0.48	0.48	0.63	0.81	1.24	3.51
Rare 2012 Improved [2]	0.46	0.42	0.67	0.77	1.34	3.74

Image	GT	Ours	Deep [1]	Shallow [1]	[2]	[4]
		11				16
	-115					5.0
		-				
			Λ.		1	.

• We evaluate our model on the SALICON dataset and on the MIT300 benchmark.

• Our solution outperforms all competitors on SALICON dataset, even the most recent approach published in CVPR 2016, by a big margin on all considered metrics.

RESULTS ON SALICON DATASET

	$\mathbf{C}\mathbf{C}$	sAUC	AUC
nod	0.74	0.77	0.87
$\operatorname{vnet}(\operatorname{CVPR16})[1]$	0.62	0.72	0.86
onvnet (CVPR16) [1]	0.60	0.67	0.84
(LSUN Challenge 2015)	0.46	0.61	0.79
Improved [2]	0.51	0.66	0.81
SUN Challenge 2015)	0.48	0.68	0.81
BMS [3]	0.43	0.70	0.79
GBVS [4]	0.42	0.63	0.79
tti [5]	0.20	0.61	0.67

RESULTS ON MIT300 DATASET