

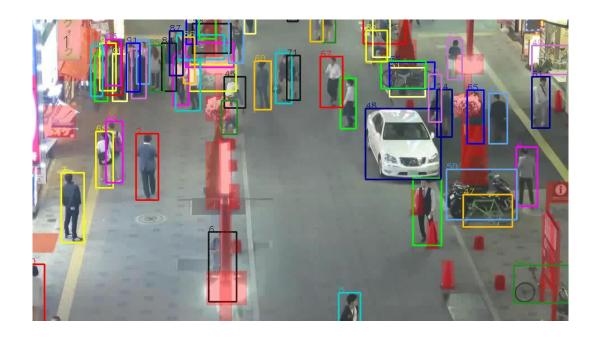
Panasonic

COMPRESSED VOLUMETRIC HEATMAPS FOR MULTI-PERSON 3D POSE ESTIMATION

Matteo Fabbri¹ Fabio Lanzi¹ Simone Calderara¹ Stefano Alletto² Rita Cucchiara¹

¹University of Modena and Reggio Emilia {name.surname}@unimore.it

²Panasonic R&D Company of America {name.surname}@us.panasonic.com



PEOPLE TRACKING

- It is defined as the problem of estimating the trajectory of multiple people in an image plane as it moves around a scene.
- We are addressing a 3D problem using 2D data
- It's hard to annotate 3D data, especially in surveillance scenarios

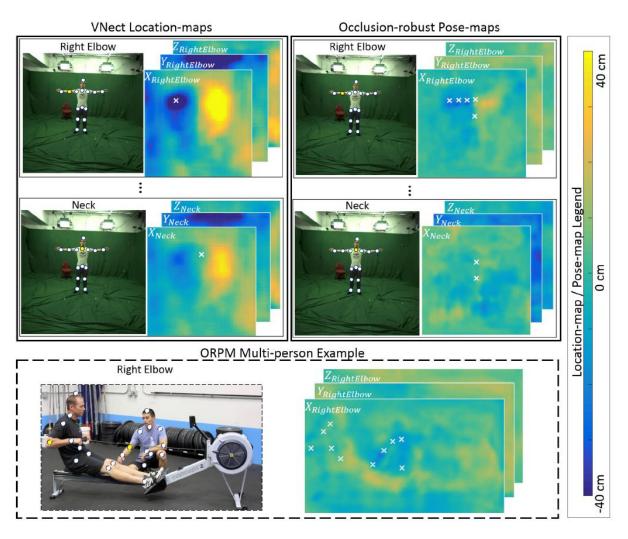
JTA DATASET

- Let's utilize a videogame:
 - Free Annotation
 - No errors
 - Photorealism
- 512 Full HD videos 30s long
- 10M people with 3D annotation

3D POSE ESTIMATION

- Single person -> Coordinate regression
- Multi person -> People Detection + Coordinate regression

This approach does not scale with the number of people!

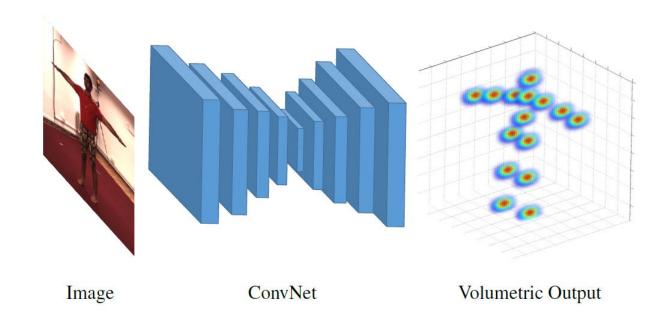

We need a bottom-up approach.

BOTTOM-UP 3D POSE ESTIMATION

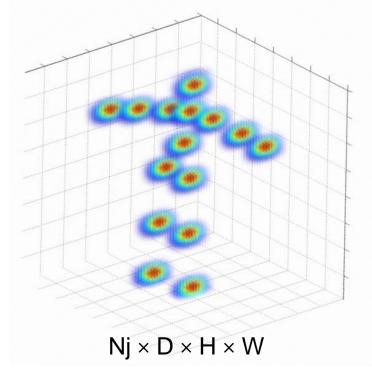
Few methods in literature

- Location Maps are not suitable in surveillance
- What about 2D pose estimation?

2D POSE ESTIMATION


- For 2D pose estimation Heatmaps are the best choice
- What about 3D heatmaps?

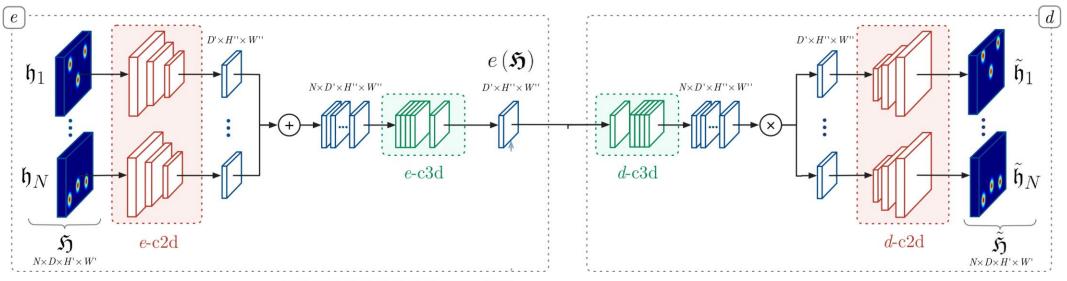
VOLUMETRIC HEATMAPS

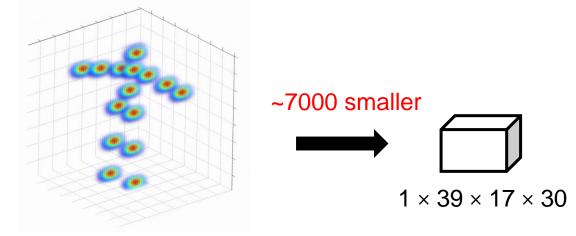

- Only for single person
- Memory and computational demanding
- Sparse signal
- Some compromise:
 - low resolution heatmaps that introduce quantization errors
 - complex training strategies that involve coarse-to-fine predictions

VOLUMETRIC HEATMAPS FOR MULTI PERSON

Full HD images with stride 8 and 10cm quantization

 $14 \times 1000 \times 128 \times 240$


COMPRESSION

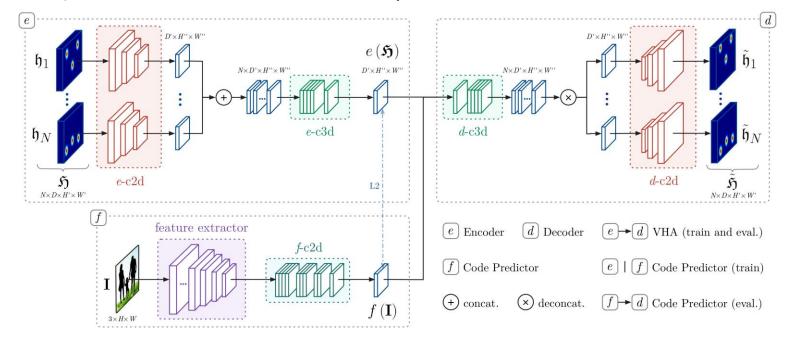


- Let's compress the Volumetric Heatmaps!
- Sparse data representation -> easy to compress
- RLE?
- Deep compression?

AUTOENCODER

 $14 \times 316 \times 128 \times 240$

OUR SOLUTION: THE LOCO APPROACH



We propose a simple method that maps high-resolution volumetric heatmaps to a **compact** and **more tractable** representation.

To this end, we use an **Autoencoder** to compress those **Volumetric Heatmaps** into a **Code** that must:

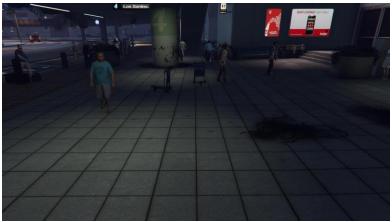
- **preserve** the gaussian **peaks** at every joint location
- be **smaller** w.r.t. the full resolution heatmaps

This representation enables, for the **very first** time, the use of volumetric heatmaps to tackle 3D Human Pose Estimation in a bottom-up fashion.

COMPRESSION LEVELS

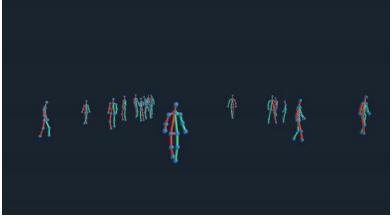
		I	F1 on JTA				
model	bottleneck size	@0vx	@1vx	@2vx			
VHA ⁽¹⁾	$\frac{D}{2} \times \frac{H'}{2} \times \frac{W'}{2}$	97.1	98.4	98.5			
$VHA^{(2)}$	$\frac{D}{4} imes \frac{H'}{4} imes \frac{W'}{4}$	92.5	97.0	97.1			
$VHA^{(3)}$	$\frac{D}{8} \times \frac{H'}{8} \times \frac{W'}{8}$	56.5	90.3	92.9			

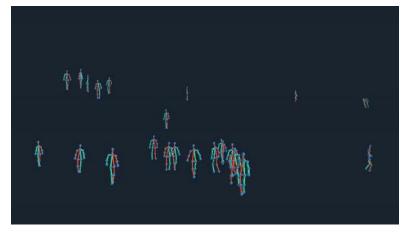
QUANTITATIVE RESULTS



	PR	RE	F1	PR	RE	F1	PR	RE	F1	
		@0.4 m			@0.8 m			@1.2 m		
Location Maps [21, 22]	5.80	5.33	5.42	24.06	21.65	22.29	41.43	36.96	38.26	
Location Maps [21, 22] + ref.	5.82	5.89	5.77	23.28	23.51	23.08	38.85	39.17	38.49	
[33] + [19]	75.88	28.36	39.14	92.85	34.17	47.38	96.33	35.33	49.03	
Uncompr. Volumetric Heatmaps	25.37	24.40	24.47	45.40	43.11	43.51	55.55	52.44	53.08	
LoCO ⁽¹⁾	48.10	42.73	44.76	65.63	58.58	61.24	72.44	64.84	67.70	
$LoCO^{(1)}+.$	49.37	43.45	45.73	66.87	59.02	62.02	73.54	65.07	68.29	
$LoCO^{(2)}$	54.76	46.94	50.13	70.67	60.48	64.62	77.00	65.92	70.40	
$LoCO^{(2)}+.$	55.37	47.84	50.82	70.63	60.94	64.76	76.81	66.31	70.44	
$LoCO^{(3)}$	48.18	41.97	44.49	66.96	58.22	61.77	74.43	64.71	68.65	
$LoCO^{(3)}+.$	49.15	42.84	45.36	67.16	58.45	61.92	74.39	64.76	68.57	
GT Location Maps [21, 22]	76.07	64.83	69.59	76.07	64.83	69.59	76.07	64.83	69.59	
GT Volumetric Heatmaps	99.96	99.96	99.96	99.99	99.99	99.99	99.99	99.99	99.99	

QUALITATIVE RESULTS





QUALITATIVE RESULTS

DOES GTA GENERALIZE TO REAL WORLD?

For people detection, YES!

THANK YOU!

If you have questions, please contact me

matteo.fabbri@unimore.it

Matteo Fabbri¹

Fabio Lanzi¹

Simone Calderara¹

Stefano Alletto²

Rita Cucchiara¹

¹ Almagelab, Al Research & Innovation Center, University of Modena and Reggio Emilia, Italy

² Panasonic R&D Company of America