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ABSTRACT 
Driver distraction is an important issue in developing 

new generation of telematic systems.  Our research is 
focused on development of novel machine vision systems, 
which can provide better understanding of the state of the 
driver and driving conditions.  In this paper we discuss in 
detail on the development of a system which allows 
simultaneous capture of the driver's head pose and driving 
view.  The system utilizes a full 360 degree panoramic 
field of view using a single video stream.  The integrated 
machine vision system includes modules of perspective 
transformation, feature extraction, head detection, head 
pose estimation, and driving view synthesis.  The paper 
presents a multi-state statistical decision models with 
Kalman filtering based tracking for head pose detection 
and face orientation estimation.  The basic feasibility and 
robustness of the approach is demonstrated with the help 
of a series of systematic experimental studies. 

Keywords: driver assistance system, closed-loop head 
detection and tracking, face orientation estimation, 
driver’s view generation.   

 

1. INTRODUCTION 

Driver distraction is an important issue in developing 
new generation of telematic systems [1].  To help 
reducing distractions caused by cell phone usage, a mobile 
machine vision system can be developed to actively 
control the talking according to the driver status and the 
traffic conditions [2].  Our research is directed towards the 
development of a novel driver assistance system “Visual 
Context Capture, Analysis and Televiewing (VCAT).”  It 
derives visual context information on the driver and the 
traffic conditions.  These cues could be used by the remote 
caller to change the conversational style according to 
events in or around the car, as shown in Figure 1.  Visual 
cues about the driver and traffic conditions can be 

conveyed to the remote caller in raw video, in avatar and 
animated scene, and in cartoon formats.  Thus the system 
provides a telepresence experience to the remote caller 
like a passenger sitting in the car.  It also estimates the 
attentive load of the driver and mitigates the conversation 
by audio-visual warnings.  In this twofold effect, cell 
phone usage would be safer by avoiding the driver from 
being distracted.   

In order to implement the VCAT system, a full 
coverage of the interior space and the dynamic scene 
outside of a vehicle must be captured for both televiewing 
and video context analysis purposes.  We use one 
omnidirectional camera, or omnicam, as the master 
sensor.  The advantage of using omnicam is that it 
automatically supports event synchronization among in-
vehicle and surroundings since they are captured in one 
shot.  It can be used to extract preliminary visual context 
at lower resolution and higher processing speed, and 
possibly drive a few rectilinear cameras where higher 
resolution video is needed.  As shown in Figure 2, 
multiple perspective views can be simultaneously 
generated from the omnicam video on the driver, 
passengers, and surroundings by a nonlinear 
transformation with any pan, tilt, and zoom values [3].  
This enables the VCAT system to analyze driver’s 
viewing direction from the driver video and also generate 
simultaneous driver’s view from the omnicam video.  
Using these videos, the attentive status and workload of 
driver can be estimated, possibly with other information 
such as facial expression [4] and maneuvering of car [5].  
This allows the VCAT system to decide when to mitigate 
cellular phone conversation.  Meanwhile, with the analysis 
of the surrounding traffic conditions, the system can detect 
potential risks at which the driver is not paying attention 
and warn the driver appropriately.   

In this paper we focus on the visual context analysis 
module which generates instantaneous driver’s view.  
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Figure 1. Information flow and context analysis of the VCAT system for driver assistance on cell phone safety. 
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Figure 2. Simultaneous multiple perspective video generation on single omnidirectional video for event analysis.  It 
enables frame-to-frame synchronization by nature.   
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Figure 3. Driver’s head detection and tracking.   

Experimental evaluations and discussions on this module 
are then presented.   

 

2. GENERATION OF DRIVER’S VIEW 
In order to generate instantaneous driver’s view, it 

needs to detect and track driver’s head to extract driver’s 

face, then estimate the driver’s viewing direction from 
driver’s face image.  Then the perspective view seen by 
driver can be generated from the omni-video parallel to 
driver’s viewing direction.   
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2.1 Head Detection and Tracking The head tracking is initialized when an ellipse is 
detected and justified to be a head for some consecutive 
frames.  Extensive RHT ellipse searching on the driver 
seat perspective view is used to find the first positive 
occurrence of head.  Once driver’s head is located and 
under tracking, the searching window is narrowed down 
and RHT uses less epochs to speed up the detection 
process.  The track is terminated when no ellipse is 
detected and the predicted head location is classified as 
non-face for some consecutive frames.   

The design consideration of head detection and 
tracking for in-vehicle application is on robustness and 
speed, and they are somewhat contradict to each other.  As 
compared to indoor situations [6], it is noted that (1) there 
is only one driver and the driver cannot wander around in 
car, and (2) the illumination condition is highly irregular 
both in intensity and in spectrum.  For (1), we only need 
to generate a perspective view on the driver seat to find 
the driver’s face.  For (2), although skin-tone based face 
detection is the fastest, it will not be feasible here due to 
variant illumination spectrum.  Edge-based methods are 
more robust then other feature extractions because they 
only rely on contrasts in the image.  From the edge map, 
driver’s head can be located by ellipse detection.  The 
proposed head and face detection scheme is shown in 

.  A perspective view on the driver’s seat is first 
generated.  For faster processing, the image is sub-
sampled and converted to gray scale for edge detection.  
Randomized Hough transform (RHT) [7] is used to search 
ellipses in the edge image with some center, size, and 
orientation limitations on the ellipses to match general 
human heads.  Each head candidate image is extracted by 
rotating the driver perspective image so that the 
corresponding ellipse aligns with a upright head pose in 
order to compensate head tilting.  Driver’s face image is 
cropped by a square window fitting to the ellipse and the 
image is scaled to a 64×64 image to reject non-face 
candidates by distance from feature space (DFFS) method 
[8][9].  Then the ellipse center, size, and orientation are 
used to update a set of constant velocity Kalman filters 
[10],  

2.2 Face Orientation Estimation and Driver’s 
View Generation 

Figure 3

Figure 3
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The next step is to estimate driver’s head pose.  The 
proposed method for head pose estimation is illustrated in 

.  Driver’s face image from head detection and 
tracking has been adjusted for head tilting.  The image is 
then compared to the view-based PCA templates to 
estimate the face orientation.  We first collect a set of 
equalized training faces of multiple people with multiple 
horizontal face orientations [11] from the omnicam.  The 
orientation in the training faces varies approximately from 
–60 to 60 degrees with 30 degree step size.  Then PCA 
subspace is constructed from the correlation matrix of the 
training faces [12] and all the training faces are projected 
into this subspace.  Mean and covariance of the 
projections are estimated for each face orientation 
category and a Gaussian distribution is approximated for 
each category.  As compare to [12], face orientations are 
categorized instead of the identities of people.  In the 
estimation stage, the scaled and equalized face image in 
the face video is projected into the PCA subspace and 
generates likelihood values on these Gaussian 
distributions.  The face orientation is thus estimated by 
maximum likelihood (ML).  The estimated face 
orientation is then filtered by another Kalman filter as in 
equation .  Then driver’s viewing direction is computed 
from the filtered face orientation and driver’s direction to 
the omnicam as in equation (2) and illustrated in ,  

Figure 4

Figure 4
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where for ellipse center and size, state x and measurement 
y are 2 by 1 and I is 2 by 2 identity matrix.  For ellipse 
orientation, x, y, and I are 1 by 1.  T is sampling interval 
or frame duration, i.e., 1/30 second.  The covariance of 
measurement noise ω(k) is estimated from real-world data, 
and the covariance of random maneuver ν(k) is 
empirically chosen by compromising between response 
time and sensitivity to noise.  The states are used to 
interpolate detection gaps and predict the head position in 
the next frame.  An ellipse search window is derived from 
the prediction and fed back to ellipse detection for the 
next frame.  This window helps minimizing the area of 
ellipse searching and less extensive RHT can be used, 
therefore increases the accuracy and speed.  It also helps 
filtering false-positive head ellipses as in .   
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where the facing direction is in terms of 0° of the 
omnicam and is the pan factor used to generate driver’s 
perspective view from the omni video.  The constant K 
approximates the ratio of gazing direction to facing 
direction for empirical driver gazing behavior.  The last 
term in equation (2) is used to take the exact location of 
head in the driver image into account, where  is the 
center of ellipse in x direction and  is the 

ellipsex

centereperspectivx
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Figure 4. Estimation of head pose and face orientation, see text for details.  The direction of driver to the camera is 
involved in the estimation of viewing direction.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Perspective of driver, constrained head detection and tracking, face orientation, and instantaneous 
driver’s view generation for televiewing.  Note the differences in illumination condition and camera location in these 
video clips.   

center of driver image in x direction.  Thus driver’s view 
video can be generated from the omnicam video with a 
fixed zooming factor to approximate human field of view, 
as shown in Figure 5.   

 

3. EXPERIMENT RESULTS AND 
DISCUSSIONS 

Evaluation of the performance of head tracking and 
face orientation estimation is accomplished using an 
extensive array of experimental data.  One set of video 

clips is collected earlier with the omnicam set on a tripod 
sitting on the floor of the passenger seat.  The clips are 
taken on different times in the day and on different road, 
weather, and traffic conditions.  Head detection rates on 
the older and newer video clips are summarized in  
and  respectively.  RHT head detection rate is the 
ratio of frames where the head ellipse is detected to the 
total number of frames in the video clip.  When rough 
RHT is applied without feedback of ellipse search 
window, head detection rate is pretty low.  The rate 
improves if we use extensive RHT ellipse search on each 
frame.  However the processing speed is very slow.  After 

Table 1
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Clip Frames Rough RHT,  

1 Epoch 
Rough RHT,  

2 Epochs 
Extensive RHT, 

10 Epochs 
RHT+ Feedback,  

10→1 Epochs 
RHT+ Feedback, 

10→2 Epochs 
#1 200 33% 58% 69% 63% 67% 
#2 75 29% 45% 75% 68% 67% 

Avg.  32% 52% 71% 64% 67% 

Table 1. Head detection rates before Kalman filtering of 2 video clips.  The camera is placed in front of the 
passenger seat and approximately 45° side viewing the driver.  For columns 3 to 5, no ellipse search window is fed 
back and full image search is used.  Note when search window is applied, the detection rate of RHT ellipse search 
with less epochs is nearly as good as the rate of extensive RHT and the processing speed is much faster.  After 
Kalman filter, the head is latched on by the detected ellipse for all frames.  DFFS bound for rejecting non-face 
candidates in these experiments is 2500.   

Table 1

 
Clip Frames Rough RHT,  

1 Epoch 
Rough RHT,  

2 Epochs 
Extensive RHT, 

10 Epochs 
RHT+ Feedback,  

10→1 Epochs 
RHT+ Feedback, 

10→2 Epochs 
#3 15 53% 67% 84% 80% 91% 
#4 15 40% 42% 71% 62% 71% 
#5 15 58% 76% 80% 76% 98% 

Avg.  50% 61% 79% 73% 87% 

Table 2. Head detection rates before Kalman filtering of 3 driver video clips.  The camera is placed in front-left of 
the driver.  Note when search window is applied, the detection rate of RHT ellipse search with less epochs is even 
better than the rate of extensive RHT and the processing speed is much faster.  After Kalman filter, the head is 
latched on by the detected ellipse for all frames.  DFFS bound for rejecting non-face candidates in these experiments 
is 2500.   

Table 2

 
DFFS Bound False Positive Rate 

2500 9% 
2000 7% 

Table 3. False positive rate of head detection before Kalman filtering.  The head detection uses closed-loop RHT 
ellipse search with 10→2 epochs.  One video clip of empty driver seat is repeatedly tested under different values of 
DFFS bound.   

Table 3

the feedback loop is closed, we use extensive RHT search 
only on the first frame and fall back to rough RHT if head 
is detected, the head detection rate is much improved to be 
as good as or even better than the extensive RHT, and the 
processing speed is as fast as rough RHT.  After KF 
tracking and interpolation, no frame is missed even in 
some tough situations like face occlusion, sharp uneven 
illumination, and turned-away face as shown in .  

 shows the false positive rates under different 
DFFS settings. 

Figure 6

Comparing  and , it suggests that the 
camera placement should be closer to the driver.  In this 
case the driver’s face is more clear and the edge map of 
driver’s head is closer to ellipse.  Active infrared 
illumination would be helpful to increase head detection 
rate since it makes the driver image more clear and 
smoothes uneven illuminations, weather, tunnel, and night 
situations.  Also, there is a trade-off between head 

detection rate and speed for RHT based ellipse detection.  
Higher head detection rate would be desirable because the 
dynamics of head motion can be quickly reflected in head 
tracking and face orientation estimation.  However, it 
would require more epochs and sacrifice real-time 
requirement.  It poses a need for less complicated ellipse 
detection algorithms.  To further speedup the process, 
multiple processors or DSP hardware would be needed.  
The tasks of head detection and tracking in  can 
be partitioned to view generation, edge detection, ellipse 
detection, and PCA-based face classification.  Each part or 
a group of modules can be assigned to a specific 
processor.   

Figure 3

Table 4 and  shows the accuracies of face 
orientation estimation on different video clips of different 
length.  The error of face orientation estimation on each 
frame is compared to the approximate ground truth value 
estimated by human.  Both the short term and long term 

Table 5
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Error before KF Error after KF Clip Frames Approximate  

Ground Truth Mean Std. Dev. Mean Std. Dev. 
Note 

#1 200 35°~23°~35° -1° 8° -1° 7°  
#2 75 35° -19° 27° -18° 24° Sharp uneven illumination 
#3 70 35° 1° 7° 0° 8°  
#4 30 35° 16° 28° -15° 16° Face occluded 

Table 4. Mid-to-long term accuracy of face orientation estimation.  The camera is placed in front of the passenger 
seat and approximately 45° side viewing the driver.  The face video is cropped by a closed-loop head detection and 
tracking with RHT of 10→2 epochs.  Error before KF is the error of the output of ML face orientation estimation 
and error after KF is the error after Kalman filter as in .   Figure 4

 
Error before KF Error after KF Clip Frames Approximate  

Ground Truth Mean Std. Dev. Mean Std. Dev. 
Note 

#5 15 -25° 0° 19° 4° 7°  
#6 15 -25° -3° 8° -2° 3°  
#7 15 0°~70° -45° 32° -50° 17° Rapid face turning 

Table 5. Short term accuracy of face orientation estimation.  The camera is placed in front-left of the driver.  The 
face video is cropped by a closed-loop head detection and tracking with RHT of 10→2 epochs.   

 

 

 

Figure 6. Some situations that trouble the face 
orientation estimation. 

Figure 6
clips exhibit comparable accuracies.  However for some 
problematic situations like in , the face orientation 
estimation shows big error deviation.  For face occlusion, 
there is no good way to estimate the orientation except by 
interpolation along the frames using Kalman filter.  The 
turned-away face problem could be alleviated by placing 
the omni-camera near the front of the driver so it captures 
all possible orientations of the face.  For uneven 
illumination situation, PCA templates are prone to 
produce higher error rates.  Other subspace feature 
analysis like LDA or ICA templates [13][14][15] would 
be helpful in this case.  We will discuss on a better scheme 
to improve the face orientation estimation.   

Eye-gaze direction estimation is needed for an accurate 
driving view.  In equation (2), we use a rough estimate of 
driver’s gazing direction from driver’s face orientation.  
Rectilinear camera set on the dash board would be needed 
because the omnicam resolution is not sufficient for the 
pupil.  A commercial system, faceLab, of Seeing 
Machines is an example for this purpose [16].  Also, 
active infrared illumination on driver’s face could be 
useful to estimate eye-gaze direction by bright pupil 
effect.   

To improve the performance of face orientation, we 
propose another scenario similar to [12].  We can 
construct a continuous density HMM with N=13 states 
which represent face orientations from approximately –90 
to 90 degrees with 15 degree step size.  The observation 
probability of the j-th states  can be modeled by a 
mixture of the five Gaussian distributions in PCA 
subspace for each training face orientation category as 
previously mentioned, or more generally M Gaussian 
mixtures,  

)(Obj

∑
=

=
M

m
jmjmjmj ONcOb

1
),,()( Uµ (3) 

where O is the projection vector of the adjusted face 
image in feature subspace, ,  is the mixture 

coefficient which sums up 1 on m, and µ  and  are 
the mean and covariance of the Gaussian density, 
respectively.  The HMM is illustrated in .  The 
state sequence  given a driver’s face video can be 
estimated by maximum a posteriori (MAP) estimation in 
real-time as  

jmc Nj ≤≤1

jm jmU

)(kq
Figure 7
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1

−==
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or optimally estimated by Viterbi algorithm [17] with 
some delay caused by sequence framming.  The initial 
probability π and state transition probability A of the 
hidden Markov chain as well as the parameters in equation 
(3) are estimated by the EM algorithm [18].  Video clips 
of driver’s face should be collected and projected into 
feature subspace to carry out the HMM distribution 
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Figure 7. Modified face orientation estimation by continuous density HMM.  Face video is projected into feature 
subspace and generates M Gaussian likelihood values.  Those values are observed by each state and a state sequence 
can be estimated to describe the face orientation sequence in the video in some optimal sense.   

parameter estimations.  Currently the experimental results 
are not availble, yet we anticipate that this approach to 
face orientation estimation will out-perform the previous 
method in that it is a delayed decision approach.  The 
weakness of the previous method is that before Kalman 
filtering, the useful likelihood information is discarded by 
maximum likelihood decision.  The estimated state 
sequence represents the face orientation movement of the 
driver.  Continuous state HMM such as Kalman filter with 
likelihood functions as observations is also of interest to 
develop for higher resolution description of the facing 
movement.   The face orientation motions can be further 
utilized to estimate driver’s attentive and psychological 
status by a hierarchical layer of estimators such as 
Bayesian nets [19].  We will conduct experiments on these 
schemes in the near future.   

 

4. CONCLUDING REMARKS 
In this paper we have proposed the VCAT driver 

assistance system in order to enhance cell phone safety for 
the driver.  The in-vehicle system modules focus on the 
recognition of driver status, which include head detection 
and tracking for driver face extraction and estimation of 
instantaneous driver’s view for assessing driver’s attentive 
focus and cognitive load.  In this paper we described 
development of an integrated machine vision system for 
accurate and robust estimation of the driver's view using a 
single omni video stream.  Novel algorithms using 
Kalman filtering based tracker and multi-state HMM 
models have been evaluated using a series of experimental 
studies.  These experiments have proven the basic 
feasibility and promise of the approach.  Enhancement of 
the system performance can be accomplished by using 
higher resolution video, specialized in-vehicle 
illumination, and embedded processors.   
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