Unimore logo AImageLab

Semantically Conditioned Prompts for Visual Recognition under Missing Modality Scenarios

Abstract: This paper tackles the domain of multimodal prompting for visual recognition, specifically when dealing with missing modalities through multimodal Transformers. It presents two main contributions: (i) we introduce a novel prompt learning module which is designed to produce sample-specific prompts and (ii) we show that modality-agnostic prompts can effectively adjust to diverse missing modality scenarios. Our model, termed SCP, exploits the semantic representation of available modalities to query a learnable memory bank, which allows the generation of prompts based on the semantics of the input. Notably, SCP distinguishes itself from existing methodologies for its capacity of self-adjusting to both the missing modality scenario and the semantic context of the input, without prior knowledge about the specific missing modality and the number of modalities. Through extensive experiments, we show the effectiveness of the proposed prompt learning framework and demonstrate enhanced performance and robustness across a spectrum of missing modality cases.


Citation:

Pipoli, Vittorio; Bolelli, Federico; Sarto, Sara; Cornia, Marcella; Baraldi, Lorenzo; Grana, Costantino; Cucchiara, Rita; Ficarra, Elisa "Semantically Conditioned Prompts for Visual Recognition under Missing Modality Scenarios" Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Tucson, Arizona, February 28 - March 4, 2025

 not available