Unimore logo AImageLab

Tracing Information Flow in LLaMA Vision: A Step Toward Multimodal Understanding

Abstract: Multimodal Large Language Models (MLLMs) have recently emerged as a powerful framework for extending the capabilities of Large Language Models (LLMs) to reason over non-textual modalities. However, despite their success, understanding how they integrate visual and textual information remains an open challenge. Among them, LLaMA~3.2-Vision represents a significant milestone in the development of open-source MLLMs, offering a reproducible and efficient architecture that competes with leading proprietary models, such as Claude 3 Haiku and GPT-4o mini. Motivated by these characteristics, we conduct the first systematic analysis of the information flow between vision and language in LLaMA~3.2-Vision. We analyze three visual question answering (VQA) benchmarks, covering the tasks of VQA on natural images---using both open-ended and multiple-choice question formats---as well as document VQA. These tasks require diverse reasoning capabilities, making them well-suited to reveal distinct patterns in multimodal reasoning. Our analysis unveils a four-stage reasoning strategy: an initial semantic interpretation of the question, an early-to-mid-layer multimodal fusion, a task-specific reasoning stage guided by the resulting multimodal embedding, and a final answer prediction stage. Furthermore, we reveal that multimodal fusion is task-dependent: in complex settings such as document VQA, the model postpones cross-modal integration until semantic reasoning over the question has been established. Overall, our findings offer new insights into the internal dynamics of MLLMs and contribute to advancing the interpretability of vision-language architectures. Our source code is available at https://github.com/AImageLab/MLLMs-FlowTracker.


Citation:

Saporita, Alessia; Pipoli, Vittorio; Bolelli, Federico; Baraldi, Lorenzo; Acquaviva, Andrea; Ficarra, Elisa "Tracing Information Flow in LLaMA Vision: A Step Toward Multimodal Understanding" Proceedings of the 21st International Conference in Computer Analysis of Images and Patterns, Las Palmas de Gran Canaria, Spain, 22 - 25 Sep, 2025

 not available