Unimore logo AImageLab

RI-PIENO - Revised and Improved Petrol-Filling Itinerary Estimation aNd Optimization

Abstract: Efficient energy provisioning is a fundamental requirement for modern transportation systems, making refueling path optimization a critical challenge. Existing solutions often focus either on inter-vehicle communication or intravehicle monitoring, leveraging Intelligent Transportation Systems, Digital Twins, and Software-Defined Internet of Vehicles with Cloud/Fog/Edge infrastructures. However, integrated frameworks that adapt dynamically to driver mobility patterns are still underdeveloped. Building on our previous PIENO framework, we present RI-PIENO (Revised and Improved Petrolfilling Itinerary Estimation aNd Optimization), a system that combines intra-vehicle sensor data with external geospatial and fuel price information, processed via IoT-enabled Cloud/Fog services. RI-PIENO models refueling as a dynamic, time-evolving directed acyclic graph that reflects both habitual daily trips and real-time vehicular inputs, transforming the system from a static recommendation tool into a continuously adaptive decision engine. We validate RI-PIENO in a daily-commute use case through realistic multi-driver, multi-week simulations, showing that it achieves significant cost savings and more efficient routing compared to previous approaches. The framework is designed to leverage emerging roadside infrastructure and V2X communication, supporting scalable deployment within next-generation IoT and vehicular networking ecosystems.


Citation:

Savarese, Marco; De Blasi, Antonio; Zaccagnino, Carmine; Salici, Giacomo; Cascianelli, Silvia; Vezzani, Roberto; Grazia, Carlo Augusto "RI-PIENO - Revised and Improved Petrol-Filling Itinerary Estimation aNd Optimization" Proceedings of IEEE Consumer Communications & Networking Conference 2026, Las Vegas, NV, United States, 09/01/2026, 2025

 not available

Paper download:

  • Author version: