Unimore logo AImageLab

Domotics for disability: smart surveillance and smart video server

Abstract: In this paper we address the problem of human posture classification, in particular focusing to an indoor surveillance application. The approach was initially inspired to a previous works of Haritaoglou et al. [6] that uses histogram projections to classify people’s posture. Projection histograms are here exploited as the main feature for the posture classification, but, differently from [6], we propose a supervised statistical learning phase to create probability maps adopted as posture templates. Moreover, camera calibration and homography is included to resolve prospective problems and improve the precision of classification. Furthermore, we make use of a finite state machineto detect dangerous situations as falls and to activate a suitable alarm generator. The system works on line on standard workstation with network cameras.


Cucchiara, Rita; Prati, Andrea; Vezzani, Roberto "Domotics for disability: smart surveillance and smart video server" Proceedings of the Workshop on Ambient Intelligence, vol. 1, Pisa, pp. 46 -57 , 23-26 September, 2003

 not available

Paper download:

  • Author version: