Unimore logo AImageLab

Dress Code: High-Resolution Multi-Category Virtual Try-On

Abstract: Image-based virtual try-on strives to transfer the appearance of a clothing item onto the image of a target person. Existing literature focuses mainly on upper-body clothes (e.g. t-shirts, shirts, and tops) and neglects full-body or lower-body items. This shortcoming arises from a main factor: current publicly available datasets for image-based virtual try-on do not account for this variety, thus limiting progress in the field. In this research activity, we introduce Dress Code, a novel dataset which contains images of multi-category clothes. Dress Code is more than 3x larger than publicly available datasets for image-based virtual try-on and features high-resolution paired images (1024 x 768) with front-view, full-body reference models. To generate HD try-on images with high visual quality and rich in details, we propose to learn fine-grained discriminating features. Specifically, we leverage a semantic-aware discriminator that makes predictions at pixel-level instead of image- or patch-level. The Dress Code dataset is publicly available at https://github.com/aimagelab/dress-code.


Morelli, Davide; Fincato, Matteo; Cornia, Marcella; Landi, Federico; Cesari, Fabio; Cucchiara, Rita "Dress Code: High-Resolution Multi-Category Virtual Try-On" Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, vol. 2022-, New Orleans, Louisiana, pp. 2230 -2234 , June 19-24, 2022, 2022 DOI: 10.1109/CVPRW56347.2022.00243

 not available

Paper download: