A new latent semantic analysis based methodology for knowledge extraction from biomedical literature and biological pathways databases
Abstract: Nowadays, a considerable amount of genetic and biomedical studies are mostly diffused on the Web and freely available. This exciting capability, if from one side opens the way to new scenarios of cooperating research, on the other side makes the knowledge retrieval and extraction an extremely time consuming operation. In this context, the development of new tools and algorithms to automatically support the scientist activity to achieve a reliable interpretation of the complex interactions among biological entities is mandatory. In this paper we present a new methodology aimed at quantifying the biological degree of correlation among biomedical terms present in literature. The proposed method overcomes the limitation of current tools based on public literature information only, by exploiting the trustworthy information provided by biological pathways databases. We demonstrate how to integrate trusted pathway information in a semantic correlation extraction chain based on UMLS Metathesaurus and relying on PubMed as literature database. The effectiveness of the obtained results remarks the importance of automatically quantifying the degree of correlation among biomedical terms in order to helpfully support the scientist research activity.
Citation:
Abate, F.; Acquaviva, A.; Ficarra, E.; Macii, E. "A new latent semantic analysis based methodology for knowledge extraction from biomedical literature and biological pathways databases" BIOINFORMATICS 2011 - Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms, Rome, ita, pp. 66 -74 , 2011, 2011not available