POSEidon: Face-from-Depth for Driver Pose Estimation
Abstract: Fast and accurate upper-body and head pose estimation is a key task for automatic monitoring of driver attention, a challenging context characterized by severe illumination changes, occlusions and extreme poses. In this work, we present a new deep learning framework for head localization and pose estimation on depth images. The core of the proposal is a regression neural network, called POSEidon, which is composed of three independent convolutional nets followed by a fusion layer, specially conceived for understanding the pose by depth. In addition, to recover the intrinsic value of face appearance for understanding head position and orientation, we propose a new Face-from-Depth approach for learning image faces from depth. Results in face reconstruction are qualitatively impressive. We test the proposed framework on two public datasets, namely Biwi Kinect Head Pose and ICT-3DHP, and on Pandora, a new challenging dataset mainly inspired by the automotive setup. Results show that our method overcomes all recent state-of-art works, running in real time at more than 30 frames per second.
Citation:
Borghi, Guido; Venturelli, Marco; Vezzani, Roberto; Cucchiara, Rita "POSEidon: Face-from-Depth for Driver Pose Estimation" Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2017-, Honolulu, Hawaii, pp. 5494 -5503 , July, 22-25, 2017, 2017 DOI: 10.1109/CVPR.2017.583not available
Paper download:
- Author version:
- DOI: 10.1109/CVPR.2017.583
Related research activities:
- Driver Attention through Head Localization and Pose Estimation
- Mercury: a framework for Driver Monitoring and Human Car Interaction
- Learning to Generate Faces from RGB and Depth data